‘ CS1¢) Computer Systems ‘

Worksheet 5 (Week 20 Tutorial) Distributed Week 20

Worksheet 5 (Tutorial)

Introduction

This worksheet is about finite state machines (Lecture 9 and 10). FSMs have many appli-
cations throughout computer science.

Simple FSMs

The following transition diagram defines an FSM. The initial state and the accepting state
are indicated. The input alphabet is {0, 1}, i.e. the machine receives a sequence of binary
digits.
Initial

A state from which all transitions lead back to itself, for example the state in the centre of
the diagram, is called an absorbing state.

1. Which of the following sequences are accepted?

2. Describe the set of all sequences accepted by this FSM.

3. Draw the transition diagram for an FSM which accepts all sequences of the form: 011,
repeated any number of times.

More Complex FSMs

The following transition diagram defines another FSM. Again the input alphabet is {0,1}.
If any state has a missing transition (for example, the initial state has no transition for 0),

CS1Q SYS 2005-2006 Worksheet 5 (Week 20 Tutorial) Page 1



‘ CS1¢) Computer Systems ‘

this means that there should be a transition to an absorbing state (not shown). This is a
way of simplifying the diagram.

Initial Accept

4. Which of the following sequences are accepted?

(a) 110
(b) 10110
(c) 1010
(d) 111

5. Draw the full version of the transition diagram, including an absorbing state and
showing all of the missing transitions.

6. Describe the set of all sequences accepted by this FSM.

7. Draw the transition diagram for an FSM which accepts all sequences of the form: any
number (at least one) of blocks, where a block is either 101 or 01.

Text Searching

Imagine that we want to search a text file for occurrences of the words “June” and “July”.
We can do it with an FSM. The input alphabet consists of all upper and lower case letters.
The accepting state is reached by any sequence of letters ending with “June” or “July”.
Here is the transition diagram. The label “other” means that the transition corresponds to
all letters except for those which label other transitions from the same state. The states
labelled “June” and “July” are accepting states showing when one of the words has been
found.

June
other

CS1Q SYS 2005-2006 Worksheet 5 (Week 20 Tutorial) Page 2



‘ CS1¢) Computer Systems ‘

To make the diagram less cluttered, we could remove all of the “other” transitions. Just
remember that from every state there should be an “other” transition going back to the
initial state.

June

Initial

July

This idea is used in programming language compiler systems (for example, the Ada compiler
in the lab) to recognise keywords in the program file. The first step in translating an Ada
program into machine language is to convert the file from a sequence of characters into a
sequence of “tokens”: “if”, “then”, “end”, “array”, and so on. This is done by implementing
an FSM, giving it the characters from the file, one by one, and taking note of every time an
accepting state is reached.

8. The diagram above is not complete. Find an example of an input sequence which
contains the word “June” but which is not detected by the FSM shown.
9. Which extra transitions are needed in order to correct this problem?

10. Draw the transition diagram for a similar FSM which recognises the words “carrot”,
“cat” and “dog”.

11. How would you design an Ada program to detect “June” and “July” in a file? The
output should be a sequence of lines of the form “June at 20”7, meaning that the 20th,
21st, 22nd and 23rd characters in the file form the word “June”.

CS1Q SYS 2005-2006 Worksheet 5 (Week 20 Tutorial) Page 3



