
2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

1	

MechEng Software
Engineering 3!

Lecture 2 : Friday 15th January!

Simon Gay!
Department of Computing Science!

University of Glasgow!

2009/10!

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

2	

2	

Software Life Cycle���
(Software Development Process)	

Ray Welland	

ray@dcs.gla.ac.uk	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

3	

3	

Why do Many Computer Systems
Fail to Work as Expected?	

•  We have all heard of computing systems that fail spectacularly at enormous
expense and possible loss of life.	

–  Examples: the London Ambulance Service and the failure of Ariane 5.	

•  Smaller scale projects fail all the time, in a less visible manner. 	

–  It is often said that 80% of computer systems fail in some way.	

•  A bug in the code is a relatively rare cause of failure. 	

–  Most systems are built by people who understand the need for testing,

and will do it thoroughly. 	

–  The Ariane 5 disaster is a rare example of inadequate testing.	

•  The most common form of failure is building the wrong system.	

–  It is difficult to find out and clearly specify customer requirements	

–  Systems are not properly validated against customer needs	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

4	

4	

Software Development	

•  Software Development consists of a number of

activities:	

–  Requirements Analysis and Specification (What?)	

–  System Design (How?)	

–  Implementation and Testing (Build the System)	

–  Delivery (Hand over to the customer)	

–  Evolution (Maintaining and enhancing the running system)	

•  Software Development Processes focus on the first
four of these, regarding evolution as a separate task	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

5	

5	

Software Life Cycle	

•  A software life cycle is the framework within

which we carry out the activities from
requirements specification to delivery	

– The life cycle may be a simple sequence of phases

(analogous to an insect’s life cycle)	

– Or it may be iterative, we repeat steps within the

sequence (or the whole sequence may be repeated,
with multiple deliveries/releases)	

•  Initially we will assume that a simple sequence
of activities is sufficient 	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

6	

6	

Describing Systems	

•  To carry our the early stages of the life cycle
we need to be able to define our requirements
and describe our system design in some agreed
format - we need a modelling language	

–  Implementation is defined in terms of a

programming language	

– We will use an object-oriented modelling

language: UML	

•  UML = the Unified Modelling Language	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

7	

7	

Why ‘Unified’?	

•  Object-oriented modelling grew up in the 1980s	

–  Grady Booch, 1982, “Object-Oriented Design”	

–  Jim Rumbaugh, OMT (object modelling technique)	

–  Ivor Jacobsen, Objectory Method	

•  UML	

–  Booch & Rumbaugh combine in 1994, later joined by

Jacobsen	

–  The Three Amigos	

–  Formed The Rational Corporation	

•  Absorbed into IBM	

•  UML now managed as a standard by OMG	

–  UML 1.0 in 1997	

–  Now UML 2.0	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

8	

8	

UML’s Diagrams	

•  Analysis	

–  Use Case Diagrams	

–  Activity Diagrams	

–  Class Diagrams	

–  Collaboration Diagrams	

–  Sequence Diagrams	

•  Design	

–  Class and Sequence

Diagrams again	

–  Statecharts	

–  Package Diagrams	

–  Component Diagrams	

–  Deployment Diagrams	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

9	

9	

UML is not ���
a development method or process	

•  UML is just a collection of ways (models) of
representing a system	

•  It doesn’t include any information about 	

–  how the representations should be created	

–  the order in which the representation should be

produced	

–  how to determine the acceptability of the

representations	

•  So we need a development process …	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

10	

10	

An Object Oriented Development Process	

•  There are many different ways of managing an object
oriented project.	

•  One of the most widely used is the Rational Unified
Process (see Sommerville 4.4), which has the
following steps:	

–  Inception	

– Elaboration	

– Construction	

– Transition	

•  Transferring the system to its working environment	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

11	

11	

Inception	

•  All projects have a starting point	

–  A brief description of the reason why the system is needed	

–  What its scope will be	

–  Roughly how much it will cost.	

•  The inception phase will generate the business case for
undertaking the projected work.	

–  How much it will cost	

–  What benefits the resulting system will provide	

–  How long it will take	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

12	

12	

Elaboration: Requirements Gathering	

•  This involves finding out what the customer wants.	

•  This will initially involve a brief project description.	

	

The development of a computer system for a community bank.
A system is required whereby customers may open accounts
and perform the usual transactions on these accounts (credit,
debit, obtain balance). The bank is also required to report its
total asset value to the government.	

•  The final result will be	

–  A fairly comprehensive list of use cases	

–  Non functional requirements. 	

•  The project description will also be expanded.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

13	

13	

Use Cases	

•  A use case is a typical interaction between a user and the system to achieve

a simple goal.	

•  Some typical examples with the community bank example might be:	

–  Create a new customer account	

–  Credit an account; debit an account; find the account balance	

–  Calculate total assets	

•  As you can see, these use cases are focused on one simple task (from the
user's point of view). 	

•  The actual engineering effort can vary greatly.	

•  An important part of designing a system is to discover all of the potential

use cases.	

•  It will not be possible to get all of them immediately	

–  it is necessary to get all of the important ones as early as possible.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

14	

14	

Use Cases	

•  Systems will normally have a large number of small use cases.	

–  each one should be as simple as possible, but no simpler.	

–  the more complex the use case, the more scope there is for ambiguity.	

•  Many of the use cases will interact with each other, and these
relationships will be described in a use case diagram.	

–  there will typically be many different user roles associated with the use

cases	

–  in the banking example: clerk, customer and manager might be user

roles	

•  Some of the use cases will be clear and unambiguous, whereas

other will be difficult to describe accurately.	

–  complex use cases are examples of requirements risk (see later).	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

15	

15	

Domain Model	

•  The domain model is a “high level” description of the system	

•  This is the “big picture” of what the system contains, how the system will

operate and the context in which it will operate	

•  Differs from use cases in that it describes the information and operations

that will provide the functionality needed to realise the use cases	

•  In object-oriented development, the domain model consists of a collection

of interacting objects	

•  In object oriented design, which is what we are doing in this course, we

look for things that make up the domain of interest.	

–  in our example, we notice the words customer, account and assets,

which could form the basis of our object oriented domain model.	

•  The domain model comprises conceptual classes that will support all of the

use cases in our system, defined in a class diagram.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

16	

16	

Elaboration: Risk Analysis	

•  We obviously want our systems to work, and need to know the

areas of risk.	

•  The following four types of risk are present in most projects.	

1 	

Requirements Risk	

2 	

Technology Risk	

3 	

Skills Risk	

4 	

Political Risk	

•  We will look at requirements risk in detail, and so the other
topics can be dealt with quickly.	

•  There will be other areas of risk associated with the software
construction process itself, which we will deal with as they
arise.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

17	

17	

Political Risk	

•  All projects need funding before they get off the

ground	

–  Write the project proposal	

–  Sell it to the people controlling the money	

–  Protect it from threats.	

•  The amount of politics involved varies depending on
whether you work in a small company, large
company or government agency	

–  Each project needs someone with political skill.	

•  We won't discuss political risk further.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

18	

18	

Skills Risk	

•  It is common to hear the attitude that once someone learns to program then

they can undertake any programming task almost immediately.	

•  This can lead to the situation where programmers who have trained in Ada

using traditional analysis and design must work on a project in C++ using
object oriented design, with no additional training.	

•  The reality is that every programming language has its own techniques
which must be mastered before a person can use it well. 	

–  A project written in C++ in the Ada style will take a lot longer to

complete than one written using C++ as it was intended to be used.	

•  It is true that we learn by making mistakes, but life is too short to make all

of them personally. It is better to learn by the mistakes of others. 	

–  Of course, it is necessary to make a certain number of mistakes

personally to learn well.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

19	

19	

Technical Risk	

•  Technology moves fast, and many projects involve new technology.	

•  The most important technique for dealing with new technology is to design

an experiment that uses the new ideas in a simplified way. 	

–  This will verify that the technology will work as expected.	

•  There will usually be a choice between several similar technologies, and so
an experiment should be designed to find out which one is best.	

–  For example – design a GUI interface to a relational database.	

•  One major form of technological risk is in fitting the components of a
design together. 	

•  Questions to ask during a design are:	

–  What will happen if this piece of technology does not work?	

–  What if we cannot connect these two pieces?	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

20	

20	

Requirements Risk	

•  The most common form of failure is to build the

wrong system.	

–  It may work perfectly, with lots of elegant algorithms, but

does not do what is required.	

•  There are three main causes for this failure.	

–  Lack of understanding of business context by the engineers	

–  Cultural differences between engineers and customers 	

–  The fact that natural language is ambiguous, and the same

words can mean different things to different people.	

2009/10	

 MechEng SE3 Lecture 2 - Simon Gay
(slides by Ray Welland)	

21	

21	

Requirements Risk (2)	

•  From the engineer’s perspective, the risk is that we do not

know what the customer really wants. 	

•  The solution that we will use on this course involves	

–  A more precise technique for describing what the system
should do, what the requirements are. These are Use
Cases.	

–  A way of producing parts of the system quickly, so that the
customer can see how the requirements look in practice.
This is achieved through Prototyping.	

