
1 MechEng SE3 2009-10 Lecture 7

MechEng SE3
Lecture 7

 Domain Modelling

Simon Gay (slides by Phil Gray)
17 February 2010

2 MechEng SE3 2009-10 Lecture 7

This week’s supplementary reading

Zero Balances and Zero Responsibility
 Michael Bolton

 http://www.developsense.com/essays/zero.html

3 MechEng SE3 2009-10 Lecture 7

Where to go for more

 Sommerville, 7th & 8th editions. Section
8.4, Chap 14 (especially 14.1 and
14.2.3)

4 MechEng SE3 2009-10 Lecture 7

What is object-oriented
programming?

Imagine that we want to work with shapes: squares, circles,
rectangles etc.

Calculating the area of a shape is important.

In a programming language, we can define functions to
calculate the areas of various shapes.

5 MechEng SE3 2009-10 Lecture 7

Shape calculations in Python

def squareArea(side):!
 return side*side!

def rectangleArea(width,height):!
 return width*height!

def circleArea(radius):!
 return pi*radius*radius!

Within a program, squareArea(4) evaluates to 16.

6 MechEng SE3 2009-10 Lecture 7

Shapes in Java

class Square {!
 int side;!

 Square(int x) {!
 side = x;!
 }!

 int area() {!
 return side*side;!
 }!
}!

class Rectangle {!
 int width,height;!

 Rectangle(int x, int y) {!
 width = x;!
 height = y;!
 }!

 int area() {!
 return width*height;!
 }!
}!

7 MechEng SE3 2009-10 Lecture 7

Shapes in Java

Within a program:

Square s = new Square(4);!

and then s.area() evaluates to 16.

8 MechEng SE3 2009-10 Lecture 7

Shapes in Java

Other properties of shapes, for example position, colour,…
can be stored in the same way as the lengths of the sides.

Other functions (methods) can be defined in the same way
as area.

We can go further by explicitly showing that Square, Circle,
Rectangle have something in common: they are all shapes.

9 MechEng SE3 2009-10 Lecture 7

Shapes in Java

abstract class Shape { !
 int area();!
}!

class Square extends Shape {!
 int side;!

 Square(int x) {!
 side = x;!
 }!

 int area() {!
 return side*side;!
 }!
}!

class Rectangle!
 extends Shape {!
 int width,height;!

 Rectangle(int x, int y) {!
 width = x;!
 height = y;!
 }!

 int area() {!
 return width*height;!
 }!
}!

10 MechEng SE3 2009-10 Lecture 7

Shapes in Java

Now, if s is any object of class Shape, we can use s.area()
and the area will be calculated by the method definition in the
particular class that s belongs to.

11 MechEng SE3 2009-10 Lecture 7

Shapes in Java

Finally, imagine that a picture contains a list of shapes:

class Picture {!
 List<Shape> shapes;!

 Picture(List<Shape> sh) {!
 shapes = sh;!
 }!

 int area() {!
 int a = 0;!
 for (Shape s : shapes)!
 a = a + s.area();!
 return a;!
 }!
}!

12 MechEng SE3 2009-10 Lecture 7

A little history:
programming languages

  Simula
»  Late 1960s
»  a language for developing

simulations
»  encapsulation

  Smalltalk
»  1970s
»  GUI concepts
»  Strictly object-oriented
»  untyped
»  Garbage collection

  C++
»  1980s
»  Extensions to existing GPL

  Java
»  1990s
»  typed
»  Not an extension of previous

language
»  Features for web-based

applications
  C#

»  2000
»  Designed for service-based

distributed applications

13 MechEng SE3 2009-10 Lecture 7

A little history: modelling

  Object-oriented modelling grew up in the 1980s
»  Grady Booch, 1982, “Object-Oriented Design”
»  Jim Rumbaugh, OMT (object modelling technique)
»  Ivor Jacbosen, Objectory Method

  UML
»  Booch & Rumbaugh combine in 1994, later joined by

Jacobsen
»  The Three Amigos
»  Formed The Rational Corporation

–  Recently absorbed into IBM
  UML now managed as a standard by OMG

»  UML 1.0 in 1997
»  Now UML 2.0

14 MechEng SE3 2009-10 Lecture 7

Objects and Classes

  An object is
»  a computational entity which

–  provides services
– with which other entities may interact
–  typically, the service consumer sends a message

(requesting the service) to the provider object

»  possesses
–  State
–  Behaviour
–  Identity

15 MechEng SE3 2009-10 Lecture 7

Classes

 A class
» Describes a set of equivalent objects

– hence, operates like a data type for objects
– typically, every object in a system belongs to a

class
» Provides a useful way of representing and

implementing the shared state and
behaviour of the objects that it describes
– E.g., object creation method

16 MechEng SE3 2009-10 Lecture 7

Sommerville on Objects

 Object
“is an entity that has a state and a set of
operations on that state. The state is
represented as a set of object attributes.
The operations associated with the
object provide services to other objects
(clients) that request these services
when some computation is required.”
(section 14.1)

17 MechEng SE3 2009-10 Lecture 7

Why Objects?

  Encapsulation
Objects can operate as software modules that organise data and
behaviour into meaningful associations

  Message-based Invocation
Helps to make code adaptable and reusable, since
»  receivers don’t have to know about senders
»  senders need only know about message protocol for receivers
»  Hence message protocol is a well-defined interface between

senders and receivers
  Data Hiding

Data hiding helps to manage complexity, since programmer can
control the data that objects are allowed to do manipulate

18 MechEng SE3 2009-10 Lecture 7

Data Hiding

  Object technology (e.g., object-oriented
programming languages and databases)
provide mechanisms for controlling access to
attributes

  So, attributes can be private to the owning
object or to some restricted set of objects

  An sender can query or modify an attribute of
a receiver via appropriate messages, even if
the attribute is private

19 MechEng SE3 2009-10 Lecture 7

Sommerville on Classes

  “Objects are created according to an
object class definition. An object class
definition is both a type specification and
a template for creating objects. It
includes declarations of all the attributes
and operations that should be
associated with an object of that class.”
 (section 14.1)

20 MechEng SE3 2009-10 Lecture 7

Why Classes?

  Inheritance
»  Provides a mechanism for sharing attributes and

operations,
»  a form of reuse

  Polymorphism
»  Allows different effects of messages to be

determined by the receiver, without the sender
having to know about the differences

»  And, can add new (sub)classes of objects without
having to change the interface between sender
and receiver

21 MechEng SE3 2009-10 Lecture 7

Method Classification

  There are three different types of method
  constructor

»  It will be called when an object is created
»  It provides guaranteed initialisation

  A transformer
»  which changes the internal state of the object

  An accessor
»  which uses the internal data without changing it

("method", "message" and "operation" mean the same thing)

22 MechEng SE3 2009-10 Lecture 7

Where do classes come from?

  once we have a set of use cases we begin a
process of analysis to identify candidate data
that participates in the use cases

  the types for this data will become a set of
classes

  during design we will
»  refine these class definitions
»  add additional classes as necessary

23 MechEng SE3 2009-10 Lecture 7

Analysis vs Design

  In developing our understanding of the classes
needed for a proposed system, there are two
fundamental stages: analysis & design

  According to Larman (Applying UML & Patterns,
section 1.4):
»  Analysis: “During object-oriented analysis, there is an

emphasis on finding and describing objects (or concepts) in
the problem domain.

»  Design: “During object-oriented design, there is an emphasis
on defining software objects and how they collaborate to fulfill
the requirements.”

  This lecture focusses on (early) analysis

24 MechEng SE3 2009-10 Lecture 7

Class Notation in UML

  A class is represented by a rectangle with
three compartments.
»  The name of the class
»  The class attributes
»  The class operations.

  The attributes are listed in a language
dependent way. UML is not fussy about the
notation used.

  The operations are written in the same
language style as the attributes.

25 MechEng SE3 2009-10 Lecture 7

Naming Classes and Instances

 AClass a class
  :AClass an anonymous instance of

 AClass
 a1:AClass a named instance of AClass
 ASuperClass::AClass

 refers to AClass which inherits from ASuperClass

26 MechEng SE3 2009-10 Lecture 7

Levels of Class Description

 Consider class that represents student
information"

 Analysis"
Student has a name attribute"

 High level design" Student
name
getName()
setName()

27 MechEng SE3 2009-10 Lecture 7

Levels of Class Description

  Detailed design"
»  Attribute held as  

private member?"
»  Or implemented as  

instance of a new  
“Name” class?"

  Implementation"
 Class Student {

 private String name;
 public String getName();
 public setName();

 }

Student
-name : String
+getName():String
+setName(String)

28 MechEng SE3 2009-10 Lecture 7

An Example Use Case:
Add New Lecture to Module

Add a new
lecture to a

module

Lecturer

29 MechEng SE3 2009-10 Lecture 7

An Example Use Case:
Add New Lecture to Module

 The lecturer selects the required module
from the relevant course and adds a
new lecture to the existing list of lectures
for that module. The details of the
lecture are completed by the lecturer."

30 MechEng SE3 2009-10 Lecture 7

An Example Use Case:
Add New Lecture to Module

 The lecturer selects the required
module from the relevant course and
adds a new lecture to the existing list
of lectures for that module. The details
of the lecture are completed by the
lecturer."

31 MechEng SE3 2009-10 Lecture 7

CRC: Finding Classes

 CRC=Class-Responsibility-Collaboration
 Technique for capturing initial class

information
 Use index cards, one per candidate

class
 Keep descriptions informal and simple

32 MechEng SE3 2009-10 Lecture 7

CRC Format

Class Name

Responsibilities Collaborations

33 MechEng SE3 2009-10 Lecture 7

CRC for Campaign

Class Name: Module

Responsibilities
Provide list of lectures
Add a new lecture

Collaborations
Course
Lecture

34 MechEng SE3 2009-10 Lecture 7

Class Responsibilities

 Doing
» Doing something itself
» Starting an action in another object
» Coordinating other objects

 Knowing
» Knowing private data
» Knowing about related objects
» Knowing how to derive a value

35 MechEng SE3 2009-10 Lecture 7

Finding Collaborations

Class Name: Module

Responsibilities
Provide list of
lectures
Add a new
lecture
Provide lecture
detail editing

Collaborations

Class Name: Lecture

Responsibilities
Provide lecture
details
Construct new
lecture
Edit lecture
details

Collaborations

Class Name: Course

Responsibilities
Provide module
list
Select a module

Collaborations

36 MechEng SE3 2009-10 Lecture 7

Elaborating the Classes

 Each class has!
» A set of attributes
» A set of operations
» A set of associations

 We represent this information in a class
diagram

37 MechEng SE3 2009-10 Lecture 7

Class Diagram Structure

class name
attributes
operations

38 MechEng SE3 2009-10 Lecture 7

Naming the Class

Module
attributes
operations

39 MechEng SE3 2009-10 Lecture 7

Attributes

Module
title

operations

info needed to select module

40 MechEng SE3 2009-10 Lecture 7

Operations

Module
title
getLectures()
addLecture()
setLectureDetails()

Gives the lecture list

41 MechEng SE3 2009-10 Lecture 7

Associations

includes

Module
title
getLectures()
addLecture()
setLectureDetails()

Lecture
title

setDetails() 1 0..*

42 MechEng SE3 2009-10 Lecture 7

Kinds of Associations

Module Timetable

Module Lecture

Course Module

Staff Member
1

* manages

1 1

1 0..*

* 1..8

43 MechEng SE3 2009-10 Lecture 7

Representing Associations between
Instances and between Classes

 Sometimes it’s useful, especially in early
analysis stages, to examine
associations at the level of object
instances

 Later, as the classes are being identified
and specified, associations are
represented at the class level

44 MechEng SE3 2009-10 Lecture 7

Representing Associations between
Instances and between Classes

Module Lecture
1 0..*

:Module

lect1: Lecture

lect2: Lecture

lect3: Lecture

45 MechEng SE3 2009-10 Lecture 7

Aggregates and Composites

  Aggregate
»  an association in which one object is a part of

another
»  Shown by an open diamond at aggregation end

  Composition
»  a strong form of aggregation
»  If the composite is deleted or copied, so must its

parts be
»  Shown with a filled diamond at the composite end

46 MechEng SE3 2009-10 Lecture 7

Examples

Course Module

ChessBoard Square

1..* 1..8

64 1

47 MechEng SE3 2009-10 Lecture 7

Class Diagram from
Example Use Case

Module

title

getLectures()
addLecture()
setLectureDetails()

Lecture

title

setDetails()

Course

title

getModules()
selectModule()

*
1..8

1 1..*

48 MechEng SE3 2009-10 Lecture 7

Finding Attributes

  Attributes should be atomic or simple
»  boolean, data, number, string, time

  A proposed attribute may turn out to be an
association with another object

  Derive attributes from operations
»  If you have a "provide name" operation, then you

will need a name attribute or an association with a
name

49 MechEng SE3 2009-10 Lecture 7

Finding Attributes in Our Example

  Consider setLectureDetails
  The use case as it stands does not specify the

attributes that make up the lecture details
  Thus, the analysis may raise questions about

the completeness or clarity of the use case
description

  E.g., perhaps need to go back to client or to
domain stakeholders to determine what is
needed as lecture attributes

50 MechEng SE3 2009-10 Lecture 7

Referring to associated objects

 At the analysis stage, you do not need
to
»  indicate how an association will be

implemented
» decide how to represent a collection

 That will be determined later in the
design process

51 MechEng SE3 2009-10 Lecture 7

Another Example:
Assign Lecturer to a Module

Actor Action System Response

Lists titles of all courses
Selects course Lists titles of all modules for that course
Selects module Displays all staff members not already allocated to a

module
Selects staff
member to be
assigned to this
module

Displays confirmation

52 MechEng SE3 2009-10 Lecture 7

Class Diagram from
First Use Case

Module

title

getLectures()
addLecture()
setLectureDetails()

Lecture

title

setDetails()

Course

title

getModules()
selectModule()

*
1..8

1 1..*

53 MechEng SE3 2009-10 Lecture 7

Refining the Class Diagram (1)

Course Module

Lecture

54 MechEng SE3 2009-10 Lecture 7

Refining the Class Diagram (2)

Courses

Course Module

Lecture

55 MechEng SE3 2009-10 Lecture 7

Refining the Class Diagram (4)

Courses

Course Module StaffMember

Staff

Lecture

56 MechEng SE3 2009-10 Lecture 7

Visibility

  Visibility is related to the data hiding features
of class members
+ public (external code can use)
protected (only child classes can use)
- private (internal to class)

  Private is normally only useful at the
implementation level

  Protected is related to inheritance and will be
discussed later

57 MechEng SE3 2009-10 Lecture 7

Visibility

 Something to think about:

 How is visibility handled in Java?
 Compare it to the visibility feature in

UML

