
An Integer Programming Formulation for a Matching
Problem

David Manlove, Duncan Milne and Sofiat Olaosebikan

School of Computing Science, University of Glasgow

BCTCS 2018, Royal Holloway, University of London

March 28, 2018

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 1 / 26



Outline

1 Introduction
Matching Problems
Student-Project Allocation problem (SPA)
SPA with preferences over Projects (SPA-P)
The problem: MAX-SPA-P

2 An Integer Programming (IP) model for MAX-SPA-P

3 Experimental results

4 Discussions and Future work

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 2 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Matching Problems

This class of problem generally involves

assigning a set of agents to another set of agents

based on the preferences of the agents

and some problem-specific constraints

for example, the capacity of the agents

Example applications include

allocation of junior doctors to hospitals

assigning conference papers to reviewers

assigning students to projects

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 3 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or
projects (SPA-P), or
student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or
projects (SPA-P), or
student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or
projects (SPA-P), or
student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or

projects (SPA-P), or
student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or
projects (SPA-P), or

student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or
projects (SPA-P), or
student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



Student-Project Allocation Problem (SPA)

SPA involves

the assignment of students to projects offered by lecturers

based on the capacities of projects and lecturers

students’ preferences over projects

lecturers’ preferences over

students (SPA-S), or
projects (SPA-P), or
student-project pairs (SPA-(S,P))

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 4 / 26



SPA with preferences over Projects (SPA-P)

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

What we seek...

a matching of students to projects based on these preferences

each student is not assigned more than one project
capacities of projects and lecturers are not exceeded

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 5 / 26



SPA with preferences over Projects (SPA-P)

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

What we seek...

a matching of students to projects based on these preferences

each student is not assigned more than one project
capacities of projects and lecturers are not exceeded

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 5 / 26



SPA with preferences over Projects (SPA-P)

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

What we seek...

a matching of students to projects based on these preferences

each student is not assigned more than one project

capacities of projects and lecturers are not exceeded

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 5 / 26



SPA with preferences over Projects (SPA-P)

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

What we seek...

a matching of students to projects based on these preferences

each student is not assigned more than one project
capacities of projects and lecturers are not exceeded

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 5 / 26



A matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

however,

s2 would prefer to be assigned p1

this means l1 also gets her most preferred project

we call (s2, p1) a blocking pair

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 6 / 26



A matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

however,

s2 would prefer to be assigned p1

this means l1 also gets her most preferred project

we call (s2, p1) a blocking pair

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 6 / 26



A matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

however,

s2 would prefer to be assigned p1

this means l1 also gets her most preferred project

we call (s2, p1) a blocking pair

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 6 / 26



A matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

however,

s2 would prefer to be assigned p1

this means l1 also gets her most preferred project

we call (s2, p1) a blocking pair

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 6 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and
2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or
(ii) si /∈M(lk) and lk is undersubcribed, or
(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in

M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and
2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or
(ii) si /∈M(lk) and lk is undersubcribed, or
(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in

M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and

2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or
(ii) si /∈M(lk) and lk is undersubcribed, or
(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in

M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and
2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or
(ii) si /∈M(lk) and lk is undersubcribed, or
(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in

M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and
2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or

(ii) si /∈M(lk) and lk is undersubcribed, or
(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in

M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and
2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or
(ii) si /∈M(lk) and lk is undersubcribed, or

(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in
M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Definition: Blocking Pair

Given an instance I of SPA-P, and a matching M in I. The pair (si, pj)
forms a blocking pair relative to M , where lk is the lecturer who offers
pj , if:

1 either si is unassigned in M or si prefers pj to M(si), and
2 pj is undersubscribed in M , and either

(i) si ∈M(lk) and lk prefers pj to M(si), or
(ii) si /∈M(lk) and lk is undersubcribed, or
(iii) si /∈M(lk) and lk prefers pj to her worst non-empty project in

M(lk).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 7 / 26



Another matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

s1 and s2 would rather swap their assigned projects, in order to be
better off

we call {s1, s2} a coalition

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 8 / 26



Another matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

s1 and s2 would rather swap their assigned projects, in order to be
better off

we call {s1, s2} a coalition

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 8 / 26



Another matching..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

s1 and s2 would rather swap their assigned projects, in order to be
better off

we call {s1, s2} a coalition

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 8 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



Definition: Coalition

Given a matching M , a coalition is a set of students {si0 , . . . , sir−1}, for
some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned in M
and prefers M(sij+1) to M(sij ), where addition is performed modulo r.

s3

s2

s1

s5

s4

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 9 / 26



The type of matching we seek..

Stable matchings

one with no blocking pair and no coalition

Image adapted from https://bit.ly/2uBuuAO (last accessed 28 March 2018).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 10 / 26

https://bit.ly/2uBuuAO


The type of matching we seek..

Stable matchings

one with no blocking pair and no coalition

Image adapted from https://bit.ly/2uBuuAO (last accessed 28 March 2018).

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 10 / 26

https://bit.ly/2uBuuAO


Stable matchings..

A stable matching

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

2 students are matched

Another stable matching

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

3 students are matched

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 11 / 26



Stable matchings..

A stable matching

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

2 students are matched

Another stable matching

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

3 students are matched

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 11 / 26



Maximum cardinality stable matching

Another problem..

finding a maximum cardinality stable matching (MAX-SPA-P)

MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

2-approximation algorithma, i.e., solution at least 1
2M = 6

3
2 -approximation algorithmb, i.e., solution at least 2

3M = 8

not approximable within 21
19 − ε, for any ε > 0, unless P = NP

a
D.F. Manlove and G. O’Malley. Student project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008
b
K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the

student-project allocation problem with preferences over projects. Journal of Discrete
Algorithms, 13:59–66, 2012.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 12 / 26



Maximum cardinality stable matching

Another problem..

finding a maximum cardinality stable matching (MAX-SPA-P)

MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

2-approximation algorithma, i.e., solution at least 1
2M = 6

3
2 -approximation algorithmb, i.e., solution at least 2

3M = 8

not approximable within 21
19 − ε, for any ε > 0, unless P = NP

a
D.F. Manlove and G. O’Malley. Student project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008
b
K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the

student-project allocation problem with preferences over projects. Journal of Discrete
Algorithms, 13:59–66, 2012.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 12 / 26



Maximum cardinality stable matching

Another problem..

finding a maximum cardinality stable matching (MAX-SPA-P)

MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

2-approximation algorithma, i.e., solution at least 1
2M = 6

3
2 -approximation algorithmb, i.e., solution at least 2

3M = 8

not approximable within 21
19 − ε, for any ε > 0, unless P = NP

a
D.F. Manlove and G. O’Malley. Student project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008
b
K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the

student-project allocation problem with preferences over projects. Journal of Discrete
Algorithms, 13:59–66, 2012.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 12 / 26



Maximum cardinality stable matching

Another problem..

finding a maximum cardinality stable matching (MAX-SPA-P)

MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

2-approximation algorithma, i.e., solution at least 1
2M = 6

3
2 -approximation algorithmb, i.e., solution at least 2

3M = 8

not approximable within 21
19 − ε, for any ε > 0, unless P = NP

a
D.F. Manlove and G. O’Malley. Student project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008
b
K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the

student-project allocation problem with preferences over projects. Journal of Discrete
Algorithms, 13:59–66, 2012.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 12 / 26



Maximum cardinality stable matching

Another problem..

finding a maximum cardinality stable matching (MAX-SPA-P)

MAX-SPA-P is NP-hard

Existing results for MAX-SPA-P

Suppose the size of a maximum stable matching M is 12,

2-approximation algorithma, i.e., solution at least 1
2M = 6

3
2 -approximation algorithmb, i.e., solution at least 2

3M = 8

not approximable within 21
19 − ε, for any ε > 0, unless P = NP

a
D.F. Manlove and G. O’Malley. Student project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008
b
K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the

student-project allocation problem with preferences over projects. Journal of Discrete
Algorithms, 13:59–66, 2012.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 12 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;
2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;
2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;
2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:

1 find a matching;
2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;

2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;
2 ensure matching does not admit a blocking pair;

3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;
2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



An Integer Programming (IP) model for MAX-SPA-P

A general construction of our IP model

create binary-valued variables to represent the assignment of
students to projects;

enforce the following classes of constraints:
1 find a matching;
2 ensure matching does not admit a blocking pair;
3 ensure matching does not admit a coalition;

describe an objective function to maximise the size of the
matching.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 13 / 26



Encoding the binary-valued variables

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

We encode each (si, pj) as a variable xi,j ∈ {0, 1}

x1,3 x1,2 x1,1
⇓

= 1, then s1 is assigned to p3
= 0, then s1 is not assigned to p3

x2,1 x2,2

x3,3

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 14 / 26



Encoding the binary-valued variables

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

We encode each (si, pj) as a variable xi,j ∈ {0, 1}
x1,3 x1,2 x1,1

⇓

= 1, then s1 is assigned to p3
= 0, then s1 is not assigned to p3

x2,1 x2,2

x3,3

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 14 / 26



Encoding the binary-valued variables

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

We encode each (si, pj) as a variable xi,j ∈ {0, 1}
x1,3 x1,2 x1,1
⇓

= 1, then s1 is assigned to p3

= 0, then s1 is not assigned to p3

x2,1 x2,2

x3,3

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 14 / 26



Encoding the binary-valued variables

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

We encode each (si, pj) as a variable xi,j ∈ {0, 1}
x1,3 x1,2 x1,1
⇓

= 1, then s1 is assigned to p3
= 0, then s1 is not assigned to p3

x2,1 x2,2

x3,3

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 14 / 26



Encoding the binary-valued variables

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

We encode each (si, pj) as a variable xi,j ∈ {0, 1}
x1,3 x1,2 x1,1
⇓

= 1, then s1 is assigned to p3
= 0, then s1 is not assigned to p3

x2,1 x2,2

x3,3

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 14 / 26



Encoding the binary-valued variables

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

We encode each (si, pj) as a variable xi,j ∈ {0, 1}
x1,3 x1,2 x1,1
⇓

= 1, then s1 is assigned to p3
= 0, then s1 is not assigned to p3

x2,1 x2,2

x3,3

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 14 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒ x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2) =⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project

∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒ x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2) =⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒

x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2) =⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒ x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2) =⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒ x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2) =⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒ x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2)

=⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

each student is not assigned more than one project∑
pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), =⇒ x1,3 + x1,2 + x1,1 ≤ 1

capacities of projects are not exceeded

n1∑
i=1

xi,j ≤ cj , (1 ≤ j ≤ n2) =⇒ x1,1 + x2,1 ≤ 1

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 15 / 26



Matching Constraints..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

capacities of lecturers are not exceeded

n1∑
i=1

∑
pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3),

=⇒ x1,2 + x1,1 + x2,1 + x2,2 ≤ 2

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 16 / 26



Matching Constraints..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

capacities of lecturers are not exceeded

n1∑
i=1

∑
pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3),

=⇒ x1,2 + x1,1 + x2,1 + x2,2 ≤ 2

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 16 / 26



Matching Constraints..

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

capacities of lecturers are not exceeded

n1∑
i=1

∑
pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3),

=⇒ x1,2 + x1,1 + x2,1 + x2,2 ≤ 2

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 16 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′

=⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j

=⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ;

T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2}

=⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2;

(ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;

(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Blocking pair constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1.
Lecturer capacities: d1 = 2, d2 = 1.

For each (si, pj), where lk is the lecturer who offers pj, we

define θi,j = 1−
∑

pj′∈Si,j
xi,j′ =⇒ θ2,1 = 1− x2,1 = 1.

create αj ∈ {0, 1}, enforce cjαj ≥ cj −
∑n1

i′=1 xi′,j =⇒ α1 = 1.

define γi,j,k =
∑

pj′∈Tk,j
xi,j′ ; T1,1 = {p2} =⇒ γ2,1,1 = x2,2 = 1.

(i) θi,j + αj + γi,j,k ≤ 2; (ii) θi,j + αj + (1− βi,k) + δk ≤ 3;
(iii) θi,j + αj + (1− βi,k) + ηj,k ≤ 3.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 17 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Coalition constraints

Students’ preferences Lecturers’ preferences

s1: p3 p2 p1 l1: p1 p2
s2: p1 p2 l2: p3
s3: p3

Envy graph

s1 s2s3

admits topological ordering =⇒ it is acyclic =⇒ no coalition.

For each (si, si′), if si envies si′ , create ei,i′ ∈ {0, 1} and enforce

ei,i′ + 1 ≥ xi,j + xi′,j′ i 6= i′

to hold the label of each vertex in the topological ordering, create
an integer-valued variable vi and enforce

vi < vi′ + n1(1− ei,i′) n1 – number of students.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 18 / 26



Objective function

summation of all the xi,j binary variables

max
n1∑
i=1

∑
pj∈Ai

xi,j

it seeks to maximise the number of students assigned to projects

Theorem

Given an instance I of spa-p, there exists an IP formulation J of I
such that an optimal solution in J corresponds to a maximum stable
matching in I, and vice-versa.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 19 / 26



Objective function

summation of all the xi,j binary variables

max
n1∑
i=1

∑
pj∈Ai

xi,j

it seeks to maximise the number of students assigned to projects

Theorem

Given an instance I of spa-p, there exists an IP formulation J of I
such that an optimal solution in J corresponds to a maximum stable
matching in I, and vice-versa.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 19 / 26



Objective function

summation of all the xi,j binary variables

max
n1∑
i=1

∑
pj∈Ai

xi,j

it seeks to maximise the number of students assigned to projects

Theorem

Given an instance I of spa-p, there exists an IP formulation J of I
such that an optimal solution in J corresponds to a maximum stable
matching in I, and vice-versa.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 19 / 26



Objective function

summation of all the xi,j binary variables

max
n1∑
i=1

∑
pj∈Ai

xi,j

it seeks to maximise the number of students assigned to projects

Theorem

Given an instance I of spa-p, there exists an IP formulation J of I
such that an optimal solution in J corresponds to a maximum stable
matching in I, and vice-versa.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 19 / 26



Implementation and Experimental Setup

IP model was implemented using the Gurobi optimisation solver

www.gurobi.com

to investigate how the solution produced by the approximation
algorithms compares to the optimal solution obtained from the IP
model, with respect to the size of the stable matchings constructed

IP solver on instance size involving 1000 students

with the coalition constraints (63.50 seconds)
without the coalition constraints (2.61 seconds)

size of a maximum stable matching = size of a matching that
admits no blocking pair, but potentially admits a coalition

for the purpose of this experiment, we removed the coalition
constraints from our IP solver

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 20 / 26



Implementation and Experimental Setup

IP model was implemented using the Gurobi optimisation solver

www.gurobi.com

to investigate how the solution produced by the approximation
algorithms compares to the optimal solution obtained from the IP
model, with respect to the size of the stable matchings constructed

IP solver on instance size involving 1000 students

with the coalition constraints (63.50 seconds)
without the coalition constraints (2.61 seconds)

size of a maximum stable matching = size of a matching that
admits no blocking pair, but potentially admits a coalition

for the purpose of this experiment, we removed the coalition
constraints from our IP solver

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 20 / 26



Implementation and Experimental Setup

IP model was implemented using the Gurobi optimisation solver

www.gurobi.com

to investigate how the solution produced by the approximation
algorithms compares to the optimal solution obtained from the IP
model, with respect to the size of the stable matchings constructed

IP solver on instance size involving 1000 students

with the coalition constraints (63.50 seconds)
without the coalition constraints (2.61 seconds)

size of a maximum stable matching = size of a matching that
admits no blocking pair, but potentially admits a coalition

for the purpose of this experiment, we removed the coalition
constraints from our IP solver

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 20 / 26



Implementation and Experimental Setup

IP model was implemented using the Gurobi optimisation solver

www.gurobi.com

to investigate how the solution produced by the approximation
algorithms compares to the optimal solution obtained from the IP
model, with respect to the size of the stable matchings constructed

IP solver on instance size involving 1000 students

with the coalition constraints (63.50 seconds)
without the coalition constraints (2.61 seconds)

size of a maximum stable matching = size of a matching that
admits no blocking pair, but potentially admits a coalition

for the purpose of this experiment, we removed the coalition
constraints from our IP solver

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 20 / 26



Implementation and Experimental Setup

IP model was implemented using the Gurobi optimisation solver

www.gurobi.com

to investigate how the solution produced by the approximation
algorithms compares to the optimal solution obtained from the IP
model, with respect to the size of the stable matchings constructed

IP solver on instance size involving 1000 students

with the coalition constraints (63.50 seconds)
without the coalition constraints (2.61 seconds)

size of a maximum stable matching = size of a matching that
admits no blocking pair, but potentially admits a coalition

for the purpose of this experiment, we removed the coalition
constraints from our IP solver

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 20 / 26



Implementation and Experimental Setup

IP model was implemented using the Gurobi optimisation solver

www.gurobi.com

to investigate how the solution produced by the approximation
algorithms compares to the optimal solution obtained from the IP
model, with respect to the size of the stable matchings constructed

IP solver on instance size involving 1000 students

with the coalition constraints (63.50 seconds)
without the coalition constraints (2.61 seconds)

size of a maximum stable matching = size of a matching that
admits no blocking pair, but potentially admits a coalition

for the purpose of this experiment, we removed the coalition
constraints from our IP solver

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 20 / 26



Experimental results: Randomly-generated SPA-P

instances

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 21 / 26



Experimental results: Randomly-generated SPA-P

instances

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 22 / 26



Experimental results: SPA-P instances derived from real
datasets

actual student preference data from previous runs of project
allocation in the School of Computing Science, University of
Glasgow; lecturer preference data was derived from this
information

Random Most popular Least popular

Year n1 n2 n3 l A B C D E A B C D E A B C D E

2014 55 149 38 6 55 55 55 54 53 55 55 55 54 50 55 55 55 54 52

2015 76 197 46 6 76 76 76 76 72 76 76 76 76 72 76 76 76 76 75

2016 92 214 44 6 84 82 83 77 75 85 85 83 79 76 82 80 77 76 74

2017 90 289 59 4 89 87 85 80 76 90 89 86 81 79 88 85 84 80 77

Table 1: A,B,C,D and E denotes the solution obtained from the IP model, 100 runs of
3
2
-approximation algorithm, single run of 3

2
-approximation algorithm, 100 runs of

2-approximation algorithm, and single run of 2-approximation algorithm respectively. Also,
n1, n2, n3 and l is number of students, number of projects, number of lecturers and length
of the students’ preference lists respectively.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 23 / 26



Experimental results: SPA-P instances derived from real
datasets

actual student preference data from previous runs of project
allocation in the School of Computing Science, University of
Glasgow; lecturer preference data was derived from this
information

Random Most popular Least popular

Year n1 n2 n3 l A B C D E A B C D E A B C D E

2014 55 149 38 6 55 55 55 54 53 55 55 55 54 50 55 55 55 54 52

2015 76 197 46 6 76 76 76 76 72 76 76 76 76 72 76 76 76 76 75

2016 92 214 44 6 84 82 83 77 75 85 85 83 79 76 82 80 77 76 74

2017 90 289 59 4 89 87 85 80 76 90 89 86 81 79 88 85 84 80 77

Table 1: A,B,C,D and E denotes the solution obtained from the IP model, 100 runs of
3
2
-approximation algorithm, single run of 3

2
-approximation algorithm, 100 runs of

2-approximation algorithm, and single run of 2-approximation algorithm respectively. Also,
n1, n2, n3 and l is number of students, number of projects, number of lecturers and length
of the students’ preference lists respectively.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 23 / 26



Experimental results: SPA-P instances derived from real
datasets

actual student preference data from previous runs of project
allocation in the School of Computing Science, University of
Glasgow; lecturer preference data was derived from this
information

Random Most popular Least popular

Year n1 n2 n3 l A B C D E A B C D E A B C D E

2014 55 149 38 6 55 55 55 54 53 55 55 55 54 50 55 55 55 54 52

2015 76 197 46 6 76 76 76 76 72 76 76 76 76 72 76 76 76 76 75

2016 92 214 44 6 84 82 83 77 75 85 85 83 79 76 82 80 77 76 74

2017 90 289 59 4 89 87 85 80 76 90 89 86 81 79 88 85 84 80 77

Table 1: A,B,C,D and E denotes the solution obtained from the IP model, 100 runs of
3
2
-approximation algorithm, single run of 3

2
-approximation algorithm, 100 runs of

2-approximation algorithm, and single run of 2-approximation algorithm respectively. Also,
n1, n2, n3 and l is number of students, number of projects, number of lecturers and length
of the students’ preference lists respectively.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 23 / 26



Discussions and Conclusions

the approximation algorithms outperform the expected bound

the 3
2 -approximation algorithm finds stable matchings that are

very close in size to optimal, even on a single run

IP solver on instance size involving 10, 000 students (100 seconds)

IP model can be employed in practice

potential coalitions can subsequently be dealt with in
polynomial-time

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 24 / 26



Discussions and Conclusions

the approximation algorithms outperform the expected bound

the 3
2 -approximation algorithm finds stable matchings that are

very close in size to optimal, even on a single run

IP solver on instance size involving 10, 000 students (100 seconds)

IP model can be employed in practice

potential coalitions can subsequently be dealt with in
polynomial-time

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 24 / 26



Discussions and Conclusions

the approximation algorithms outperform the expected bound

the 3
2 -approximation algorithm finds stable matchings that are

very close in size to optimal, even on a single run

IP solver on instance size involving 10, 000 students (100 seconds)

IP model can be employed in practice

potential coalitions can subsequently be dealt with in
polynomial-time

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 24 / 26



Discussions and Conclusions

the approximation algorithms outperform the expected bound

the 3
2 -approximation algorithm finds stable matchings that are

very close in size to optimal, even on a single run

IP solver on instance size involving 10, 000 students (100 seconds)

IP model can be employed in practice

potential coalitions can subsequently be dealt with in
polynomial-time

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 24 / 26



Discussions and Conclusions

the approximation algorithms outperform the expected bound

the 3
2 -approximation algorithm finds stable matchings that are

very close in size to optimal, even on a single run

IP solver on instance size involving 10, 000 students (100 seconds)

IP model can be employed in practice

potential coalitions can subsequently be dealt with in
polynomial-time

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 24 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1

7
all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7

all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length

7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7

what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer?

7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer?

7

might be solvable in polynomial-time with one lecturer?

remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer?

7

might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1

3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer?

7

might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3

more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3

more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Future work

Interesting directions..

Approximation algorithm with improved bounds?

Fixed-Parameter Tractable (FPT) algorithm for MAX-SPA-P?

each project and lecturer has capacity 1 7
all preference lists are of bounded length 7
what if there is a constant number of lecturer? 7
might be solvable in polynomial-time with one lecturer?
remains hard to solve with two lecturers, even if each project has
capacity 1 3
more parameters yet to be explored..

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 25 / 26



Thank you for your attention

David Manlove1, Duncan Milne and Sofiat Olaosebikan2. An Integer
Programming Approach to the Student-Project Allocation Problem
with Preferences over Projects. To appear in proceedings of ISCO 2018:
the 5th International Symposium on Combinatorial Optimisation,
Lecture Notes in Computer Science, Springer, 2018.

Corresponding author: Sofiat Olaosebikan
Website: www.dcs.gla.ac.uk/∼sofiat
Email: s.olaosebikan.1@research.gla.ac.uk

1
Supported by grant EP/P028306/1 from the Engineering and Physical Sciences Research Council.

2
Supported by a College of Science and Engineering Scholarship, University of Glasgow.

D. Manlove, D. Milne, S. Olaosebikan (School of Computing Science, University of Glasgow)Integer Programming BCTCS 2018 26 / 26


	Introduction
	Matching Problems 
	Student-Project Allocation problem (SPA) 
	SPA with preferences over Projects (SPA-P) 
	The problem: MAX-SPA-P

	An Integer Programming (IP) model for MAX-SPA-P
	Experimental results
	Discussions and Future work

