An Integer Programming model for a matching problem Sofiat Olaosebikan, Duncan Milne and David Manlove School of Computing Science, University of Glasgow

1. What matching problems are

- Matching problems generally involve - assigning a set of agents to another set of agents; - based on the preferences of the agents, and
 - some problem-specific constraints.
- First studied by Gale and Shapley [1]
- they described the College Admissions problem which involves assigning applicants to colleges; - they also described the Stable Marriage problem which involves the optimal assignment of n men to n

		1		1			l.	

4a. An instance of SPA-P

Preferences										
Stu	dent	JS			Lecturers					
s_1 :	p_3	p_2	p_1		l_1 :	p_1	p_2			
s_2 :	p_1	p_2			l_2 :	p_3				
s_3 :	p_3									

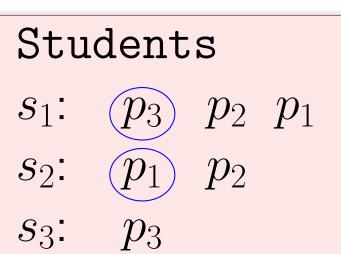
Figure 3: Preference lists are strictly ordered, student s_1 prefers p_3 to p_2 , and so on. Each project has capacity 1. Lectures l_1 and l_2 have capacity 2 and 1 respectively.

The goal is to find a *matching* such that:

each student is assigned at most one project;

4c. We seek stable matchings

• one with no blocking pair and no coalition.



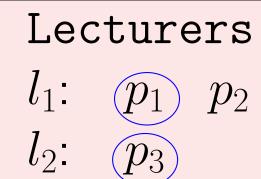


Figure 6: A stable matching of size 2.



2. Example applications

The National Resident Matching Program (NRMP) in the United States [2] employs a matching algorithm to allocate medical students to hospitals.

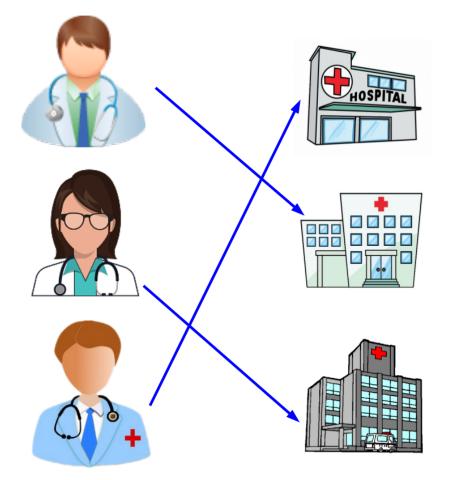


Figure 1: Hospitals-Residents problem (HR).

2 A generalisation of HR arises when university departments seek to allocate students to projects.

Students

Lecturers

the capacities of projects and lecturers are not exceeded.

4b. Unstable matchings

With respect to Figure 3, we have:

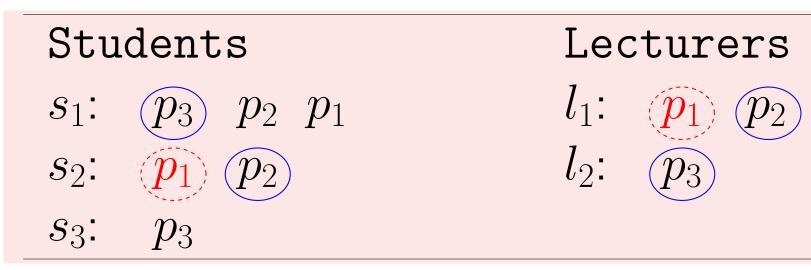


Figure 4: Matched projects are circled in blue. (s_2, p_1) forms a *blocking pair*, s_2 and l_1 both prefer p_1 to p_2 .

 (p_3)

Students Lecturers l_1 : p_1 p_2 $s_1: p_3 (p_2) (p_1)$ $l_2: p_3$ s_2 : $(p_1) (p_2)$ (p_3) s_3 :

Figure 5: $\{s_1, s_2\}$ forms a *coalition*, s_1 and s_2 would rather swap their assigned projects to be better off.

Figure 7: A stable matching of size 3.

The varying sizes of these stable matchings leads to the problem of finding maximum cardinality stable matching given an instance of SPA-P, which we denote by MAX-SPA-P.

4d. Existing results for MAX-SPA-P

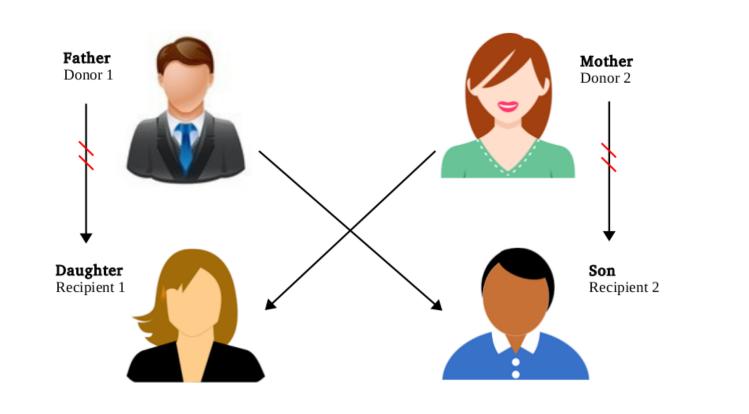
- MAX-SPA-P is NP-hard and approximable to within 2 [3].
- MAX-SPA-P is approximable to within $\frac{3}{2}$ [4]; - this is the best known approximation algorithm for MAX-SPA-P, with a lower bound of $\frac{21}{19}$,
 - it produces a stable matching whose size is at least two-thirds of that of a maximum stable matching.

Question: Can we solve MAX-SPA-P to optimality?

s_1 :	$p_3 \hspace{0.1in} p_2 \hspace{0.1in} p_1$	l_1 offers p_1 and p_2
s_2 :	$p_1 p_2$	l_2 offers p_3
s_3 :	p_3	

Figure 2: Student-Project Allocation problem (SPA).

3 The *Kidney exchange problem*



Where my research comes in

inherent complexity of some of the The open problems and their important applications motivate my research in the area of efficient (polynomial-time) algorithms for matching

Answer: Yes! – An Integer Programming (IP) model for MAX-SPA-P

We give a general construction of the model:

- create binary-valued variables to represent the assignment of students to projects;
- enforce the following classes of constraints:
- find a matching;
- ensure matching does not admit a blocking pair; - ensure matching does not admit a coalition;
- describe an objective function to maximize the size of the matching.

Theorem: Given an instance I of SPA-P, there exists an IP formulation J of I such that a maximum stable matching in I corresponds to an optimal solution in J and vice-versa.

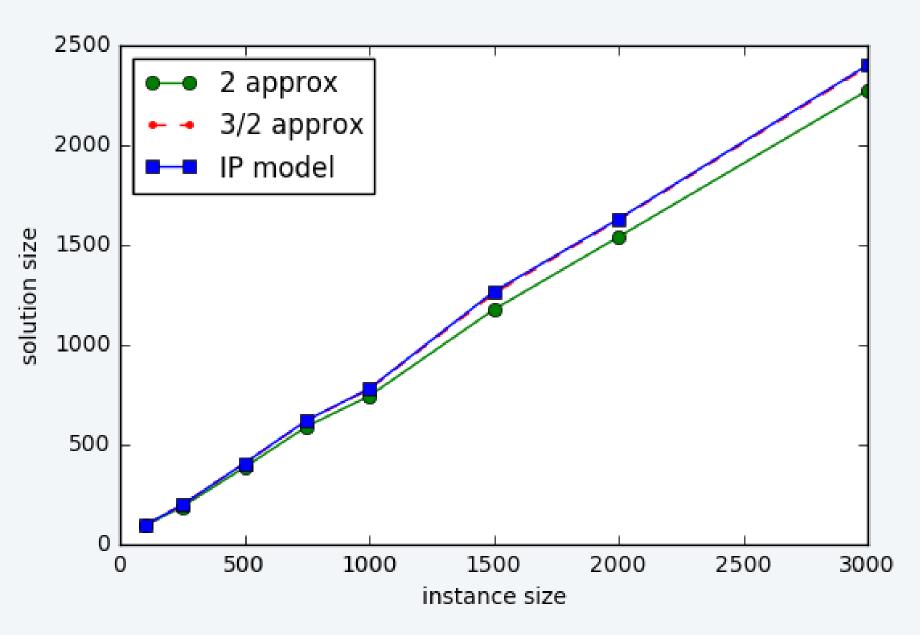


Figure 8: An empirical analysis that compares the approximation algorithms and the IP model for randomly generated SPA-P instances.

Conclusion: The solution produced by the $\frac{3}{2}$ approximation algorithm is extremely close to optimal! **Future work**: To study properties of the preference lists that would lead to a significant difference between the solution produced by the IP model and the $\frac{3}{2}$ approximation algorithm.

problems.

3. A matching problem definiton

A variant of SPA where:

 students and lecturers have preferences over projects,

projects and lecturers have positive capacities,

is known as the *Student-Project Allocation prob*lem with preferences over Projects (SPA-P) [3].

References

[1] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 69:9–15, 1962.

[2] www.nrmp.org. Accessed 05-05-17.

[3] D.F. Manlove and G. O'Malley. Student project allocation with preferences over projects.

Journal of Discrete Algorithms, 6:553–560, 2008.

[4] K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for the student -project allocation with preferences over projects. Journal of Discrete Algorithms, 13:59–66, 2012.

Contact Information

Web: www.dcs.gla.ac.uk/~sofiat • Email: s.olaosebikan.1@research.gla.ac.uk

First year PhD student, supervised by David Manlove and Kitty Meeks. Supported by the College of Science and Engineering, University of Glasgow.

SICSA theme: Theory, Modelling and Computation.

