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ABSTRACT
Typing on touchscreen keyboards is inherently inaccurate as
users tend to touch locations offset from their intended tar-
get. Offsets are user-specific and can further differ for a
given user between postures (left-hand, right-hand, index-
finger or two-thumb typing). On the other hand, back-of-
device interaction has been used to predict screen touches on
randomised abstract targets. We propose a new approach
where unique offset models are learned for each posture and
back-of-device is used to predict posture. Offset models are
learned using linear regression while classification is achieved
through SVMs and GPs. The models lead to significant im-
provements in typing accuracy. We show that modelling
thumbs within two-thumb typing as separate postures can
further improve accuracy. Posture misclassifications, how-
ever, can introduce errors in the model. This can be allevi-
ated by weighted averaging of offsets based on probabilities
from a probabilistic classifier - GP.

1. INTRODUCTION
Typing on touchscreen keyboards compared to physical

ones is inherently inaccurate. There are a number of reasons
for this. Firstly, keys on such keyboards occupy a screen
area much smaller than the area covered by a finger. Thus,
when a user tries to press a certain key, they often touch
a location of the screen offset from their intended target.
This leads to ambiguous results in determining the intended
touch location. Thumbs are particularly problematic as they
result in even larger touched areas. The problem is known
as the Fat Finger Problem [13].

Another issue is concerned with the fact that mobile de-
vices are used in a variety of contexts. Users type in different
ways - using one hand or the other; or using both. Dif-
ferent contexts imply different behaviour so a touchscreen
keyboard needs to be able to adapt to such changes in the
environment. Finally, touchscreen keyboards are often used
while moving. This impairs the user’s ability to accurately
aim for the correct key and can result in a further decrease
in touch accuracy.

These features introduce difficulties in creating efficient
touchscreen keyboards. We propose a new multi-modal ap-
proach to the problem. We learn offset models for each user
for a number of postures and we use back-of-device inter-
action to determine posture. In this sense, a posture is the
way the device is held by the user (e.g. left hand, two hand)
and an offset model is a function mapping an actual touch
location (where the user touched) to an intended touch lo-
cation (where the user was aiming for). Two-thumb typing
is considered a special case of the approach where we also

try to infer the thumb used at a given touch and attach a
unique offset model to each thumb. Learning offset mod-
els is achieved through a simple linear regression approach
while posture is classified using SVMs and GPs.

The next section provides some related work while section
3 discusses the models employed for the remainder of the
paper. Section 4 presents the approach proposed here in
its two dimensions: posture inference (sec. 4.1) and offset
modelling (sec. 4.2). The user experiments undertaken are
discussed in section 5 while section 6 presents the evaluations
performed and discusses the results from these. Finally, we
present some conclusions and propositions for future work.

2. RELATED WORK
The work proposed here combines three distinct research

areas. Firstly, posture detection provides a way for a mo-
bile device to infer the user context, specifically how the user
holds the device and operates with it. Secondly, a number of
machine learning models try to solve issues with touch key-
boards by learning offset functions. Finally, back-of-device
interaction investigates how users interact with the back of
a mobile device (in contrast to the front) and how this could
be used to improve the overall user experience.

2.1 Posture Detection
Posture detection deals with inferring the posture of the

hand when using the device. Recently Goel et al. proposed
GripSense [6] which uses the mobile device touchscreen and
gyroscope to infer posture. The postures discussed are lying-
on-a-flat-surface - interacting with device will it is on a flat
surface (table), index-finger - holding the device in one hand
and using it with the index finger of the other, left-thumb
and right-thumb use - holding the device in one hand and
operating it with the thumb of the same hand.

The features used to infer posture are rotation of device,
touch size and shape of swipe arcs (the arc “drawn” by a
thumb while scrolling). Each of the three features produces
a classification of the inferred posture and a majority voting
scheme is used to make the final decision. Detecting when
the device was lying on a flat surface proved to be easy
to achieve and was was virtually always (99.42%) correctly
classified. Classification of the other 3 postures was still
reasonably accurate (87.4%).

2.2 Typing Models
Several models have been proposed to improve typing ac-

curacy on touchscreen keyboards. Weir et al. [17] proposed
using user-specific offset functions which are modelled using
Gaussian Process (GP) [10] regression. The authors show
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that the approach can lead to significant improvements in
touch accuracy (23.47% for a 2mm button). They also
demonstrate that user-specific models outperform models
trained on a pool of users.

While this paper covers general touchscreen interaction,
a second paper [16] presents an application of the model
to touchscreen typing specifically. The novelty in the ap-
proach is the combination of the offset model with a lan-
guage model. The offset model produces a probability dis-
tribution over keys while the language model produces a dis-
tribution over letters. Both distributions are fed into a de-
coder which produces the final key probabilities. Compared
to a baseline method, the observed error rate was reduced
by over 4.9% for typing while sitting, 5% while standing and
7.6% while walking.

2.2.1 Two-thumb typing
A limitation of most typing models is that they only con-

sider one-thumb text entry. Two-thumb text entry was dis-
cussed in [7] and later in [3], although this is based on phys-
ical miniature QWERTY keyboards. Both papers present
models for calculating a predicted text entry rate of a spe-
cific keyboard based on parameters such as size of keys and
time to press a key. The assignment of keys to thumbs is
particularly relevant here. In [7] it is entirely static, mean-
ing the authors draw a virtual line through the middle of the
keyboard and assume keys on each side are pressed using the
respective thumb.

In [3] a dynamic assignment is introduced on a somewhat
limited scale. The authors state that 4 keys in the middle of
the keyboard (v, b, g and y) can be pressed by either thumb
while the rest are statically assigned. The thumb used to
press each of the four keys is not inferred dynamically. In-
stead, it is assumed the user will make a “greedy” decision
to press these keys with the thumb that will take the least
amount of time to move to the respective key location.

2.2.2 ContextType
Most recently Goel et al. [5] developed a typing model

based on posture detection. The model called ContextType
builds on the previously developed GripSense. The authors
show that each posture introduces a new offset pattern for
key touches, therefore a separate offset model is created for
each posture. The postures observed in GripSense are the
same here with one exception. The lying-on-a-flat-surface
posture is replaced by a two-thumb typing one.

Once ContextType decides on a posture, the relevant off-
set model is loaded and used to calculate a probability for
each key on the keyboard. The process also employs a 5-
gram language model which provides a second probability
for each key based on the previous 4 key entries. The two
probabilities are then multiplied and the key with the largest
final probability is chosen.

ContextType results in a 20.6% decrease in error rate com-
pared to the control condition. The model is also said to
detect postures on average within 5 user interactions with
an accuracy of 89.7%.

2.3 Back-of-Device Interaction
Recently there has been a significant amount of research

in back-of-device interaction with mobile devices. Noor et
al. [8] propose a model for predicting screen touches using
back-of-device data. The aim is to predict which area of the

screen will be touched before the actual interaction taking
place. The approach is based on a GP regression model
which makes a touch prediction based on the back-of-device
sensor values. It is shown there exists a strong correlation
between back-of-device interaction and front-of-device touch
target. The model can predict touch position 200ms before
contact with an accuracy of 18mm. What is more, contact
time can be reasonably predicted about 0.5s before touch.
Both touch position accuracy and contact time predictions
are increased further with the decrease of time to touch.

In [12] Schoenleben and Oulasvirta proposed a “Sandwich
keyboard”. The new keyboard allows for ten finger touch
typing using back-of-device interaction. It builds on previ-
ous similar keyboards utilising buttons on the back of the
device by replacing these with a touch sensor. This allows
for easy modifications of the keyboard including the use of
different layouts, e.g. QWERTY and Dvorak Standard Key-
board (DSK). The keyboard also constantly adapts to the
unique typing patterns of each user. The authors state that
users can learn this technique and reach reasonable typing
speeds within 8 hours of training. Using QWERTY test
subjects reached a typing speed of 26.1 words per minute
(wpm), while using DSK this increased to 46.2 wpm.

Buschek and the authors of the previous paper proposed
a new model [2] building on this approach. The main idea
is the same but more complex machine learning models are
employed compared to the“naive”approach used previously.
Results presented reduce the error rate of the previous ap-
proach by 40%.

3. BACKGROUND
The following section introduces the machine learning mod-

els used within the rest of the paper. As previously men-
tioned we learn offset functions using linear regression. Clas-
sifying postures is achieved with Support Vector Machines
and Gaussian Processes.

3.1 Linear Regression
Linear regression is a simple regression model that al-

lows learning a linear relationship between attributes and
responses [11]. This relationship can be expressed as

f(x;w) = wᵀx,

where x is a vector we need to make predictions for and
w is a vector describing the linear relationship in the seen
data.

The task is to find the model w that explains this relation-
ship best. There are a number of approaches to achieve this.
The most popular and the one used here is least squares re-
gression. This defines the best model as the one minimising
a loss function. The loss function is the sum of the squared
distances between the true value of a point and its predicted
value. Formally, the loss function looks like:

argmin
w

1

N

N∑
n=1

(tn − f(xn;w))2,

where f(xn;w) is the predicted value for xn according to
the model w and tn is xn’s true value. Once w is calcu-
lated making a prediction for x′ is as simple as calculating
f(x′;w).
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3.2 Support Vector Machines
Support Vector Machines (SVM) are nonprobabilistic bi-

nary classifiers [11]. SVMs have been successfully applied
to a wide range of Machine Learning tasks and for many of
these their performance is hard to beat. SVMs learn a de-
cision function which maximises the margin. The margin is
the distance between the decision boundary and the closest
data points on each side. Learning the decision function is
achieved by solving the following constrained optimisation
problem:

argmin
w

N∑
n=1

αn −
1

2

N∑
n,m=1

αmαntmtnk(xn,xm),

subject to

N∑
n=1

αntn = 0 and 0 ≤ αn ≤ C for all n.

The set of points closest to the decision boundary are
called support vectors. The decision boundary is defined
with respect to its distance to the support vectors, therefore
support vectors are the only points required for classifica-
tion. and remaining points can be discarded. This is a main
advantage of the SVM over other algorithms as only a small
subset of the points is required to make predictions.

Since data is not always linearly separable, it is crucial
for the SVM to be able to learn nonlinear decision bound-
aries. What we can do is apply transformations to the data
points to lift them to a new feature space where they are
linearly separable. Kernel functions (kernels) allow perform-
ing calculations in the new feature space without explicitly
transforming data points. In this sense, allows us to use a
linear classifier to solve nonlinear problems. Popular kernels
include the Gaussian (Radial Basis Function) kernel, linear
kernel and polynomial kernel.

A main advantage of SVMs over other algorithms is the
fact that you can easily substitute one kernel for another and
thus learn a different classifier. In the optimisation problem
the kernel is represented by the function k(xm,xn). Sub-
stituting this function by any available kernel is straightfor-
ward and leads to a new SVM.

The C parameter in the decision function controls the
softness of the margin. A soft margin allows some of the
training points to be misclassified with the aim to further
increase the margin and potentially improve classification
performance on unseen data. Kernels could also introduce
parameters of their own. It is important to tune all these
parameters. This can be achieved through cross validation.

3.3 Gaussian Processes
A Gaussian Process (GP) [10] is a collection of random

variables, any finite number of which have a joint Gaussian
distribution. A GP is specified by a mean function m(x) and
covariance function (kernel) k(x,x′). The Gaussian process
is then defined as:

f(x) ∼ GP (m(x), k(x,x′)).

Without loss of generality one can set m(x) = 0 and com-
pletely define the GP through its covariance function.

GPs can be used for both regression and classification
tasks. Here we focus on GP classification. In the binary

case we place a GP prior over the latent function f(x) and
then using a squashing function (e.g. logistic function) to
squash the prior to values between 0 and 1 - a probability.
The new prior becomes π(x) , p(y = +1|x) = σ(f(x)). In-
ference is then divided into two steps. In the first step we
compute the distribution of the latent variable correspond-
ing to a test case:

p(f∗|X,y,x∗) =

∫
p(f∗|X,x, f)p(f |X,y)df ,

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior
over the latent variables. The second step requires using the
distribution over f∗ to produce a probabilistic prediction:

π(x) , p(y = +1|x) =

∫
σ(f∗)p(f∗|X,y,x∗)df∗.

The non-Gaussian likelihood in the first equation makes
the integral analytically intractable. The second equation
can similarly be intractable. This raises the need for ana-
lytic approximations of integrals. Techniques used to achieve
this include Laplace Approximation and Expectation Prop-
agation.

An advantage of GP classification over SVMs is the fact
the former is a probabilistic classifier, i.e. classification re-
sults in probabilities over classes instead of hard decisions.
Probabilities provide the level of certainty the classifier has
on a given decision. This is very important for tasks were the
misclassification cost is quite high, e.g. classifying patients
as healthy when they have TB.

4. APPROACH
The approach presented here is a combination of the dis-

cussed previous work into a single typing model. From [16]
we know that user-specific typing models can improve typ-
ing accuracy on mobile devices. This implies a separate
offset model for each posture [5]. Assuming we have ob-
tained offset models for each posture we need to know which
posture is being used so the relevant model can be loaded.
GripSense [6] provides a way to achieve this with a rea-
sonable accuracy. However, we believe that use of back-of-
device data instead, will result in improved performance.

After we have learned the regression and classifications
models, we can use these to improve typing accuracy. On
each touch we use back-of-device data to determine posture
then load the relevant offset model and use that to calculate
an intended touch location.

4.1 Inferring Posture
In contrast to previous work, the approach discussed here

uses back-of-device data for posture classification. As in
ContextType we discuss 4 postures - left-thumb, right-thumb,
index-finger and two-thumb typing (all in portrait mode).
The aim is to build a classifier able to distinguish between
the four postures. Some calibration data is required from
each user to train the classifier. After training it can be
used to dynamically determine the current posture.

Posture classification is achieved by evaluating the capaci-
tance values of touch sensors placed on the back of a mobile
device. There are 24 such sensors and values from each
are sampled on every touch. Data is represented as 24 di-
mensional vector (one for each sensor) of integer values in
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the range [0, 65535], i.e. x = [s1 s2 s3 ... s24]ᵀ. We start
with N vectors x1,x2,x3, ...,xn and 4 targets t = 0, t =
1, t = 2, t = 3. We build an (N, 24) matrix of the training
data and scale it to 0 mean and unit variance. We then
train the classifier using the scaled vectors and their labels
(x1, t1), (x2, t2), (x3, t3), ..., (xn, tn).

The classifier used is a multiclass one-against-one Sup-
port Vector Machine. In this sense, a one-against-one clas-
sifier is a set of binary SVMs each of which is trained on
a pair of the class labels. Classification is then performed
by using all SVMs. A majority voting scheme between the
resulting classes is used to determine the final class label.
Two SVM kernels are investigated - Radial Basis Function
(RBF) kernel and linear kernel with hyper-parameters γ =
{0.001, 0.01, 0.1, 1, 10} (RBF only) and C = {0.001, 0.01,
0.1, 1, 10, 100, 1000}. Grid search with 3-fold cross valida-
tion is used to determine the optimal hyper-parameters for
each SVM. The Python library for Machine Learning scikit-
learn [9] was used for learning SVMs and hyper-parameter
optimisation.

Making a prediction for a test point x′ = [s1 s2 s3 ... s24]ᵀ

starts by scaling x using the same mean and variance used
for scaling the training data. The new vector is then clas-
sified through the multi-class SVM which produces a class
label out of the four existing classes t′ = svm(x′).

4.1.1 Two-thumb Typing
Two-thumb typing is a special case in the approach. Con-

textType considers this as a static posture. In other words,
it does not provide for a variance in the touch of certain keys
by different thumbs. It is believed most users will touch keys
on far left and far right sides with the respective thumb.
However, keys in the middle can be touched by both. Some
users might have a tendency to use one finger more than the
other. This can vary further depending on which key was
touched beforehand.

Thus, we believe that typing with each thumb within two-
thumb mode presents a unique offset model in itself and as
a result consider these as separate postures (leading to 5
postures in total). The idea is to not only infer that a user
is typing with both hands but also which thumb is used for
each touch.

4.2 Offset Models
Learning offset models was achieved by a simple linear

regression approach. Each offset is modelled by fitting 2
regressions - one for x and one for y where each of these
is a function of both x and y. In other words, we start
with M training examples m1,m2,m3, ...,mn where each m
is a tuple of (x, y) coordinates; M targets on x coordinate
u1, u2, u3, ..., un and M targets on y coordinate v1, v2, v3,
..., vn. Targets are modelled as the distance on the given co-
ordinate between a touch location and the centre of the key
the user was asked to touch (fig. 1). Note that while x and
y values are positive, u and v are real-valued numbers. User
errors were filtered be removing any touches at a distance
larger than 2 key widths from the given key centre.

Two different vector representations were investigated. Ini-
tially a training vector was (x, y) tuple. A second approach,
similar to [1], represents a point as a vector in the form
p = [x y x2 y2]ᵀ. The new model provides more flexibility
to the offset functions learned. Furthermore, a slight re-
duction in overall mean squared error (MSE) was observed

Figure 1: Modelling offsets. The intended touch location is
the centre of the key but the actual location touched is offset
on both x and y coordinates. The offset is modelled as the
difference between the two locations on each coordinate - u
and v. Note that the axes on the N9 are inverted.

compared to the simpler representation. This led to the de-
cision to use the quadratic model for the remainder of the
experiments. However, there are alternative representations
which could also be suitable.

Using the least squares approach we fit 2 regression lines
rx with (p1, u1), (p2, u2), (p3, u3), ..., (pn, un) and similarly
ry with (p1, v1), (p2, v2), (p3, v3), ..., (pn, vn). The scikit-
learn [9] implementation of least squares regression was again
used to fit the models.

To make predictions for a new touch location a = (x, y),
we build a new vector p′ = [x y x2 y2]ᵀ and use the re-
gression models to predict an offset, i.e u′ = rx(p′) and
v′ = ry(p′). The intended touch location is then ai =
(x+ u′, y + v′).

5. EVALUATION
Data for model evaluation was collected through a set of

user experiments.

5.1 Hardware
An existing prototype mobile phone was used throughout

the experiments. The device is a regular Nokia N9 smart-
phone extended with a 0.1mm thick flexible printed circuit
board (PCB). This is placed on the back and the sides of
the device and includes 24 capacitive sensors. The PCB is
interfaced directly into the phone’s internal bus.

5.2 Logging Application
A logging application was developed for the experiments.

This was implemented using the Pygame library 1 for Python.
The user interface of the application is a keyboard similar
to keyboards used in touchscreen smartphones (fig. 2). The
lower section of the screen contains the actual keys while the
top section provides instructions and displays typed strings.

In the background the application logs data from all phone
sensors. In particular on each touch of the screen, the ap-
plication records:

• letter asked to type

1http://pygame.org
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Figure 2: User interface of the logging application

• location touched as (x, y) coordinates

• accelerometer data for the past 0.5 seconds sampled at
50Hz

• back-of-device values from all 24 sensors

• posture used for typing

• thumb used for typing (only in two-thumb posture)

All data is logged at both touchup and touchdown events
so sensor data for any typed letter is recorded twice.

5.3 User Experiments
Experiments included 17 participants (12 male, 5 female),

aged between 20 and 30 (Mean = 23.4, SD = 2.6). Three
of the users reported as left-handed and only one of them
reported they were not a regular touchscreen keyboard user.

Experiments required users to complete 24 tasks. In the
first twelve of these users were asked to type a series of let-
ters. A single task covered one posture and change of posture
was required after every task. Each posture was investigated
three times resulting in 12 tasks in total (4 postures, 3 times
each). The aim was to obtain data from 3 separate sessions
so as to investigate the magnitude of session effects in users’
typing patterns.

By session effect we mean the difference in the way the
user holds a device in a given posture on different occasions.
For instance, after typing with right hand the user puts the
phone down and then picks it back up to again type with
his right hand. A significant session effect would mean than
each time the user picks up the device, they hold it substan-
tially different from previously. Furthermore, we would like
to assess how susceptible our models are to such effects.

A task in the experiments required typing each of the 26
letters in the English alphabet twice, resulting in 52 touches.
In two-thumb mode the number of touches doubled (52 for
each thumb) and users were instructed which thumb to use
for each touch. The letter sequence for each task was gen-
erated randomly.

The second set of 12 tasks followed a similar design but
users were typing sentences instead. These were picked ran-

Prediction
0 1 2 3

T
ru

th

0 50 0 0 0
1 0 36 0 0
2 0 0 43 0
3 0 0 0 102

(a) User 3

Prediction
0 1 2 3

T
ru

th

0 50 0 0 0
1 0 52 0 0
2 1 0 44 1
3 0 0 0 83

(b) User 9
Table 1: Posture classification confusion matrices for two
users. Two-thumb typing is considered as one posture. Class
labels: 0 = left-hand, 1 = right-hand, 2 = index-finger, 3 =
two-thumb.

domly from an existing sentence pool. The pool was gen-
erated from the Enron mobile dataset [15] which consists
of sentences written by Enron employees on mobile devices.
In this way the dataset represents a collection of real sen-
tences typed on mobile devices which matches our require-
ments. The version used contained only lower case char-
acters stripped of all punctuation. Sentences, however, con-
tained verbalised numbers. Any sentences of length less than
10 characters or more than 100 were discarded. This resulted
in a pool of 1332 sentences with average length of 38.6 char-
acters, including space characters.

Users typed 2 sentences per tasks except in two-thumb
mode tasks. In these they typed 2 sentences per thumb
and 4 additional sentences which did not specify a thumb.
Instead users were free to use whichever thumb they liked
at each touch. The aim was to collect data representative
of their real typing patterns in two-thumb mode. Also, no
user typed the same sentence twice.

The whole experiment took about 40 minutes to complete
and users were given the option to take a break after every
8 tasks. A touch always registered the correct letter on
screen and no means of error correction were available. The
users did not perceive any of the errors they made. The aim
was to collect data representative of the user’s real typing
behaviour which could be modelled as an offset function. For
example, if users perceive the error and when asked to type
P they tend to touch the area closer to O, they will modify
their behaviour to make more accurate touches. Otherwise,
we could model this offset and move any touches to the
intended location in this way allowing them to type more
naturally.

6. RESULTS AND DISCUSSION
This section presents the results from the undertaken eval-

uations. Irregular spikes were observed in one of the sensor
values. This is believed to be the result of a hardware fault.
Points containing such values were omitted throughout the
experiments. The number of points filtered usually ranges
between 1 and 2% of the number of data points for a par-
ticular user.

6.1 Inferring Posture
We started with an evaluation on the posture classification

accuracy. This was based on the calibration data collected
for all 3 sessions for each posture. The data was split into
a training set and test set (30% of the data points). Cross
validation was used to choose hyper-parameters.

Table 1 presents confusion matrices for posture classifica-
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Prediction
0 1

Truth
0 40 11
1 7 35

(a) User 1

Prediction
0 1

Truth
0 30 11
1 16 35

(b) User 6
Table 2: Two-thumb classification confusion matrices for
two users. Class labels: 0 = left-thumb, 1 = right-thumb.

tion for two users. Virtually all predictions here are correct.
On average across all users, the model achieves a classifi-
cation accuracy of 99.7% significantly better than Context-
Type’s 89.7%. What is more, in ContextType this is “on av-
erage achieved after 5 user interactions”whereas our method
makes predictions based on data for a single touch. This al-
lows for not only more accurate predictions but also quicker
ones - immediately after the user starts typing. In addi-
tion, dynamic changes of grip whilst typing can be detected
instantly.

A following experiment looked into classifying thumbs within
a two-thumb posture. Principal Component Analysis (PCA)
was used for dimensionality reduction. Data was reduced to
2 dimensions for visualisation purposes. Figure 3 presents
the PCA plots for three users. The plots do not demon-
strate any clear distinction between the two classes. This
is particularly true for user 6 (fig. 3b) where there does not
appear to be any structure at all. What is more, we can
see that there is a significant session effect in user 1’s grip
patterns (fig. 3a) which is something we will need to deal
with. User 7 (fig. 3c) is the only user where there exists a
relatively constant pattern differentiating between the two
classes. In the plot, most right thumb touches are towards
the top of plot while most left thumb ones are towards the
bottom. This is, however, clearly not linearly separable.

We then looked into building a classifier to discriminate
between the two classes. Table 2 presents the confusion ma-
trices for two users. The significant decrease in accuracy
compared to posture prediction demonstrates that this is
a harder task to achieve. Predictions are still substantially
better than random which suggests that there is signal in the
data, although not clearly visible in 2 dimensions. Across all
participants the SVM achieves an average classification ac-
curacy of 76.8%. User 6 whose PCA plot reveals no structure
still achieves 65 out of 92 points correctly classified (70.7%).
Classification accuracy is much better for users 1 (80.6%)
and 7 (81.7%).

6.2 Offset Models
Since typing with a thumb within two-thumb typing has

not been considered before we initially looked into building
offset models for this. Because of a slight change in the
design of user experiments, offset models could not be cal-
culated for the first two participants. Further results are
based on the remaining 15 users.

Hyper-parameter optimisation is performed as previously.
However, we also add an external 10-fold cross-validation to
smooth out the results from the scripts. In other words, we
run a script 10 times and each run has a unique train/test
set split.

6.2.1 Two-thumb typing

User No Perf Pool SVM GP Aver

3 236.6 171.1 181.0 180.4 181.1 177.7
4 398.2 238.9 278.1 292.9 265.2 256.3
5 279.3 231.5 230.2 235.9 244.4 229.3
6 253.7 221.7 229.9 235.1 236.4 228.4
7 227.3 137.5 187.3 174.2 173.9 163.7
8 442.0 162.3 187.0 195.9 184.2 180.4
9 462.2 226.2 233.2 245.4 245.8 234.3
10 455.3 178.0 179.3 183.4 183.2 177.8
11 167.2 149.0 148.1 150.3 151.9 145.7
12 409.4 178.9 184.5 184.8 192.2 179.3
13 482.7 211.1 273.3 279.0 275.2 247.0
14 315.9 172.2 184.3 188.1 189.3 178.4
15 277.3 121.3 134.9 132.0 131.4 129.8
16 394.3 247.0 292.8 307.9 298.5 279.4
17 561.6 234.4 350.5 362.7 356.5 329.0

Mean 357.5 192.1 218.3 223.2 220.6 209.1

Table 3: Mean Squared Error rates for each user using each
of the proposed models. Lowest values for each user in bold
(not including the perfect model).

We first considered offset models within two-thumb mode
as one model, similarly to previous work. We call this the
pooled model. The first row in figure 4 presents the offsets
for two participants based on the model. Figure 5 compares
the pooled model performance against using the actual touch
location (no model). Performance is measured as the pro-
portion of touches within virtual buttons of different sizes.
The virtual buttons are centred at the physical key centres
and are shaped as circles with radius increasing from 1 to
7mm. The aim is to see how performance fluctuates on dif-
ferent sized buttons. A further performance metric used is
MSE (table 3).

Figure 5 demonstrates a large improvement in performance
of the offset model compared to the baseline. This is very
apparent for both users 8 and 13. The performance gap is
similar for other users. User 11 is an exception here as they
observe very minimum improvement in accuracy through
the model. This is probably the case as they are more ac-
curate than other users which does not allow much room
for improvement. Across users the impact of the model also
decreases with the increase of the virtual button size. This
is to be expected as the larger the button sizes, the easier
it is to hit them. The two models usually converge at 4 or
5mm button sizes.

To compare the performance of models across all users we
employ two metrics:

• V2 - virtual button accuracy on buttons with 2mm
radius (higher is better)

• MSE - mean squared error in pixels - measured as the
sum of MSE values on x and y coordinates (lower is
better)

With respect to these metrics across all users the pooled
model achieves V2 = 83.1%, MSE = 218.3 while the base-
line achieves V2 = 64.7%, MSE = 357.5.

We then considered thumbs as separate models and build
offset plots for these (second row of fig. 4), we call this the
perfect model as we know exactly which thumb was used
for each touch. It can be observed that these two particular
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(a) User 1 (b) User 6 (c) User 7
Figure 3: PCA of back-of-device data on two thumb typing for three users. Circles represent touches with left hand and
triangles represent touches with right hand. Each of the three sessions is in a different colour.

Figure 4: Offsets models for two users. Top row - pooled
model and bottom row - perfect model (left thumb offsets
in red and right thumb ones in green). Arrows are scaled to
better reveal the pattern.

users have unique typing patterns for each of their thumbs.
The pooled model in the top row looks like the average of
the two thumb models in the bottom row. This limits the
flexibility of the learned model which we believe would re-
duce typing accuracy. Modelling thumbs as separate models
should be worthwhile.

As a following experiment we looked into modelling each
thumb as a separate posture and based on back-of-device
data, dynamically predicting the thumb used - predictSVM
model (we use an SVM for classification). The perfect model
has ideal knowledge on the thumb used, i.e. the model
presents the ideal performance we can reach if make per-
fect predictions. Our goal is to build a thumb prediction
model as close as possible to the perfect one.

We then compared the performance of all three models-
pooled, perfect and predictSVM (fig. 6). As expected the
perfect model outperforms all others for all three users. The
predictSVM model, however, does not necessarily lead to an
improvement over the pooled one. Across users the perfect
model achieves V2 = 86.5%, MSE = 192.1 over V2 = 82.7%,

MSE = 223.2 for the predictSVM model.
The problem with the predictSVM model is the cost of

misclassification. From section 6.1 we know that about 25%
of the time our classifier makes the wrong decision. Al-
though most points are classified correctly, the cost of mis-
classification is high. Using the wrong regression model can
lead to offsetting a touch to a new location further away
from the centre of the key. This raises the need for new
classification methods. In particular we require a proba-
bilistic classifier to gain some confidence on the certainty of
the prediction.

This led to the introduction of GP classification. Two new
models were built here: predictGP and averageGP. The for-
mer is identical to the previous predictSVM with the only
exception being replacing the classification algorithm with
a GP. The class with highest probability was chosen as the
class label. GP classification was implemented using the
GPy2 library for Python. The likelihood used is Bernoulli
and inference was performed using the Expectation Prop-
agation algorithm. The covariance function is RBF. The
difference in the formulation of the RBF function in GPy
and scikit-learn required a mapping from one to the other to
allow the search through the same hyper-parameter values.
GPy exposes two parameters for their RBF kernel imple-
mentation - variance σ and lengthscale l. By fixing σ = 1,
one can express the relationship between l and scikit-learn’s
γ as:

l =

√
1

2γ

The equivalent range of values for l is now l = {0.22, 0.71,
2.24, 7.07, 22.36}. This is searched in the same fashion as
previously.

The averageGP model leverages the probabilities from the
GP classification approach. Instead of making a decision on
the thumb used, this model calculates offsets using regres-
sions for both thumbs. A weighted average of the resulting
offsets, based on the probability for each class, is taken as
the final offset. With regards to out offset model definition,
for each touch a = (x, y) we calculate ul, vl, ur and vr,
where ul is the offset on x using the left thumb regression

2http://sheffieldml.github.io/GPy/
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(a) User 8 (b) User 11 (c) User 13
Figure 5: Proportion of touches within different virtual button sizes for 3 users. The pooled model is compared to the no
model.

(a) User 7 (b) User 8 (c) User 13
Figure 6: Comparison of perfect, pooled and predict thumb (predictSVM ) models for three users.

model. The overall offset is then u = p(l)ul + p(r)ur and
v = p(l)vl + p(r)vr, where p(l) is the probability of class
left-thumb and p(r) is the probability of class right-thumb,
resulting from the thumb classification with the GP.

We compared the performance of the new models on the
V2 metric (figure 7). There is a notable improvement on all
models against the no model approach and again the perfect
model seems to perform best. More interesting here is the
comparison between the thumb predicting models. It is clear
that the averageGP model (V2 = 84.9%, MSE = 209.1)
outperforms the others across most users. The improvement
is especially prominent for users 6, 7 and 13. The only user
that does not benefit from the weighted averaging is user 16.

To evaluate the strength of the weighted averaging ap-
proach, we also built a simple alternative model where we
do not try to predict thumbs. Instead we calculate offsets
for each thumb and simply take the mean of the two values.
The aim was to see if simpler methods can lead to similar
performance to the averageGP model. We compared the
two models for users which observed large performance im-
provements by weighted averaging. With the simple averag-
ing model user 13 achieved an MSE = 271.6 while user 17
achieved MSE = 349.9. These values are much higher than
averageGP ’s MSE = 247.0 and MSE = 329.0, respectively
(tab. 3), and approach the respective pooled model values.
This also supports are hypothesis that a pooled offset model
represents an average of the two thumb offset models. Over-
all, there is a notable advantage of weighted averaging com-
pared to a simple mean approach.

Comparing the GP to SVM reveals no significant dif-
ference in performance. The two models seem to slightly
outperform each other per user with a significant differ-

ence in performance in favour of the GP model for partic-
ipants 4 and 17. Overall, predictGP achieves V2 = 83.1%,
MSE = 220.6.

The performance gap between the perfect model and oth-
ers demonstrates that building offset models for separate
thumbs can lead to significant performance improvements
in two-thumb typing tasks. Perfect classification, however,
is not realistically achievable and this hinders performance
of thumb-predictive models.

The use of a probabilistic classifier along with a weighted
averaging scheme can alleviate the problem. The averageGP
model clearly outperforms other predictive models in the
thumb classification task. The averageGP is the model with
highest V2 value and lowest MSE value across all users.

6.2.2 All Postures
A similar evaluation was performed for models covering

all postures. As we have shown that modelling thumbs as
separate postures can improve typing accuracy (sec. 6.2.1),
here we consider these separate. This leads to 5 postures
in total. We start with a predictSVM model, then build
a predictGP one and finally an averageGP one. These are
identical as previously except that: (1) instead of using bi-
nary classifiers we use multiclass ones (one-against-one SVM
and a multinomial GP) and (2) we build 5 separate offset
models for each user (1 per posture). Also, the averageGP
model performs the weighted averaging on 5 offset values
instead of 2.

Since multiclass Gaussian Process classification is not avail-
able for Python, a new implementation was required. This
was achieved by translating MATLAB code for the mul-
ticlass GP approach proposed by Girolami and Rogers [4]
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Figure 7: Percent of touches within 2mm button for each
user: (top) across all models and (bottom) across thumb
prediction models only.

(available online3). The authors propose a multinomial pro-
bit regression with a GP prior. A variational Bayesian ap-
proach is used for inference. We run the algorithm with a
maximum of 50 iterations and monitor the percent change
in the lower bound of the marginal likelihood. If the differ-
ence between iterations is less than 0.1% we terminate the
algorithm. These limitations were introduced to limit the
runtime of the experiments. Experiments here use the same
covariance function (RBF) and hyper-parameters as previ-
ously. Again we measure V2 and MSE values (table 4).

As a first experiment here we compare the performance of
the baseline to the predictSVM model. Figure 8 presents ac-
curacy results for virtual buttons of different sizes for three
participants. All three users achieve a substantial improve-
ment in virtual button accuracy. This is especially true for
users 8 and 13. For user 11, who did not achieve significant
performance improvements in two-thumb mode, we can still
see an increase in accuracy. Although the user is quite accu-
rate when typing with two thumbs, they are not so in other
postures and this is where the models can lead to improve-

3http://www.dcs.gla.ac.uk/people/personal/
girolami/pubs_2005/VBGP/

User NoMod SVM GP Average

3 293.5 230.7 230.1 228.2
4 457.2 255.9 255.5 254.6
5 324.4 264.7 265.8 264.3
6 279.5 227.1 227.8 223.8
7 228.9 179.9 181.1 176.8
8 433.5 190.9 188.3 188.6
9 422.7 238.7 238.3 233.6
10 398.4 188.4 188.4 187.8
11 198.5 157.1 153.8 156.7
12 433.3 207.9 205.3 205.
13 477.6 289.3 287. 279.8
14 330.3 206.6 208.1 204.1
15 316.8 141.3 138.5 138.8
16 452.6 287.7 284.2 287.6
17 485.1 267.1 259.5 274.7

Mean 368.8 222.2 220.8 220.3

Table 4: Mean Squared Error rates for each user using each
of the proposed models across all postures. Values represent
the sum of MSE values on x and y coordinate. Lowest values
for each user in bold.

ments. This can also be observed in other users where they
would perform better in postures they usually use for typ-
ing and not so well in others, they are not too familiar with.
Overall, the model achieves V2 = 82.5% and MSE = 222.2
over V2 = 63.1% and MSE = 368.8 for the baseline.

As previously we also compared the performance across
models (fig. 9 and table 4). All of these lead to notable
improvements across all users over the no model approach.
The predictGP model achieves V2 = 82.7% and MSE =
220.8, while the averageGP attains V2 = 82.8% and MSE =
220.3. In figure 9 we can see that the averageGP models still
seems to perform best for most users. This is not the case,
however, for users 16 and 17 where the predictGP model is
the top performer.

Overall, there does not seem to be a large performance
gap between the three models except for a slight edge of
the GP models over the SVM one. This is probably due to
the fact of the almost perfect classification we get from the
back-of-device sensor (sec. 6.1). The low misclassification
rate does not allow for much improvement as we are almost
always using the correct model. A further reason is the lim-
itations we impose on the Variational Bayes iterations. Ex-
amining the resulting probabilities from the GP we noticed
that even for postures easy to classify such as index-finger
typing the model results in probabilities no higher than 0.6
for the respective class. Fitting a better GP could result in
further improvements. Still, for some users we can gain a
performance increase by using a GP over an SVM.

6.3 Text Entry Error Rate
As a final experiment we evaluated the performance of the

typing models using the error rate metric proposed in [14].
The error rate is calculated as a function of the minimum
string distance between the presented text (what we asked
the user to type) and the transcribed text (what they actu-
ally typed).

Previous experiments considered letter typing data only
while here we consider both letters and sentences. We use
the former for learning the classification and regression mod-
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(a) User 8 (b) User 11 (c) User 13
Figure 8: Proportion of touches within different virtual button sizes for 3 users across all posture. The predictSVM is compared
to actual touch location

Figure 9: Percent of touches within 2mm button for each
user across all postures: (top) all models and (bottom) pre-
diction models only.

els (calibration data) and the latter as test data. As the
test data is now in the form of sentences, this evaluation is
more representative of the model performance on real typ-
ing scenarios. Moreover, since test data comes from sessions
separate from the calibration ones, we also evaluate the gen-
eralisation performance of the models and their susceptibil-
ity to session effects. The experiments were undertaken on
both virtual buttons (as previously) and physical ones (the
actual key dimensions as used in the logging application key-
board). To gain an understanding of the overall performance
per user and across users, the only models evaluated are the
all posture ones.

It needs to be noted that all error rates reported in this
section are slightly higher that actual. The reason for this is
the filtering of touches which observe spikes in the back-of-
device sensor. By omitting these touches we remove actual
characters from the transcribed text which in turn artificially
increases the error rates. This is, however, a rare event and is
also observed on all models so if a touch is filtered out on one
model, it will also be filtered on all of the others. Although
this leads to an increase in error rates in absolute terms, the
relative model performance should still be comparable.

Using physical buttons and no offset modelling users achieve
an error rate of 18.45%. This is reduced to 17.22% for pre-
dictSVM and 17.28% for predictGP (lower values are bet-
ter). As expected averageGP is the overall best performer at
16.29%. Improvement of averageGP over the baseline is sta-
tistically significant. This was determined through a paired
t-test. We calculated this on both per-user basis (p<0.02)
and per-sentence basis(p<0.001). Again predictSVM and
predictGP have very similar performance.

There are also substantial improvements for particular
users, for example user 4 (no model = 18.08%, predictSVM
= 13.44%, predictGP = 13.13%, averageGP = 10.37%) and
user 8 (no model = 13.65%, predictSVM = 8.75%, predictGP
= 8.39%, averageGP = 7.96%). There are, however, others
who do not necessarily benefit from the more complex mod-
els, e.g. user 10 (no model = 15.77%, predictSVM = 10.96%,
predictGP = 11.12%, averageGP = 10.89%).

Things are similar on virtual button sizes. Figure 10
presents the improvement of the predictSVM model over
the no model approach. There is again a notable reduction
in the predictSVM error rate against the baseline. This is
more pronounced for users 4 and 10 and less so for user 3.
We can also state that the model generalises well on unseen
data and is not for most users susceptible to session effects.
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(a) User 3 (b) User 4 (c) User 10
Figure 10: Error rates at different virtual button sizes for three users using predictSVM and no model. Note that lower values
are better.

(a) User 3 (b) User 4 (c) User 10
Figure 11: Error rates at different virtual button sizes for three users, comparing predictive models.

We compare the error rate performance of the predictive
models in figure 11. Improvements of the averageGP model
over the others are not as pronounced here but still exis-
tent. This is especially true for user 4. Across users, at
2mm virtual buttons, the models achieve the following er-
ror rates: no model = 53.07%, predictSVM = 44.30%, pre-
dictGP=44.61%, averageGP = 43.07%.

Although in section 6.2.2 we did not observe a significant
performance difference between the predictSVM and the av-
erageGP approach, this is more pronounced here. We be-
lieve the reason for this is a more noticeable session effect for
some users (e.g. user 4). Such effects increase the misclas-
sification rate of the posture classification algorithm which
limits the impact from the offset models. The weighted av-
erage approach, however, counterbalances the error to some
extent, thus leading to better results.

However, we still believe that the performance is limited
by the almost perfect posture classification. To investigate
this hypothesis we looked into the error rate improvements
for users who are known to benefit from the averageGP
approach on two-thumb typing. For instance, using pre-
dictSVM across all postures user 13 achieves error rates of:
virtual = 44.38% and physical = 15.92%. Switching to av-
erageGP reduces these to virtual = 43.36% and physical =
15.44%. Looking at the same results for two-thumb typing
only, we see that the user achieves the following error rates:
virtual = 51.26% and physical = 19.75% for predictSVM,
and virtual = 48.32% and physical = 16.23% for averageGP.
Things look similar for user 17. For these users, the im-
provement in the two-thumb postures is more substantial
than overall. However, as the improvement of the model in
the remaining three postures is limited, this dominates the

average across all 5 postures and does not allow for large
overall improvements.

7. CONCLUSIONS
We proposed a new multi-modal approach to touchscreen

typing based on back-of-device interaction and user-specific
offset models. We showed that using back-of-device to deter-
mine posture is significantly more accurate than previously
proposed approaches. Furthermore, our approach makes
predictions instantly as opposed others which require a num-
ber of interactions.

We also demonstrated that thumbs should be modelled us-
ing separate offset models in two-thumb typing tasks. How-
ever, thumb inference is harder than the prediction of other
postures. Misclassifications are expensive and can lead to
a decrease in performance. Using a probabilistic classifier
(GP) and a weighted averaging approach based on prob-
abilities can help counterbalance these errors. The aver-
ageGP model substantially outperforms other thumb predic-
tive models in two-thumb typing tasks. Across all postures
the approach is also notably better than the other investi-
gated models.

Future work could investigate better predictive models
(GP or other) for the thumb used in two-thumb mode. The
perfect model demonstrated that there is a lot of room for
improvement over other models and the averageGP model
is only on a partial solution to the problem. Another avenue
for future work is exploring alternative offset functions, e.g.
GP regression, similarly to [17].

Finally, the combination of the proposed models with a
language model could be investigated. This is something
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that was considered here but was not implemented due to
time constraints. We would use the probabilities from the
classification model and combine these with probabilities
from the offset models which results in a probability distri-
bution over keys. The language model then produces a sim-
ilar distribution over letters. We use a decoder to combine
these and produce the final key probabilities. The probabil-
ities would provide more information to the decoder which
would allow it to make better informed decisions.
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M. Löchtefeld. A user-specific machine learning
approach for improving touch accuracy on mobile
devices. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and
Technology, UIST ’12, pages 465–476, New York, NY,
USA, 2012. ACM.

12


	Introduction
	Related Work
	Posture Detection
	Typing Models
	Two-thumb typing
	ContextType

	Back-of-Device Interaction

	Background
	Linear Regression
	Support Vector Machines
	Gaussian Processes

	Approach
	Inferring Posture
	Two-thumb Typing

	Offset Models

	Evaluation
	Hardware
	Logging Application
	User Experiments

	Results and Discussion
	Inferring Posture
	Offset Models
	Two-thumb typing
	All Postures

	Text Entry Error Rate

	Conclusions
	References

