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1 INTRODUCTION
This document includes supplementary material to the bioinformatics
submission. More information and code and data downloads can be
found at http://www.dcs.gla.ac.uk/inference/metsamp.

2 MODEL DESCRIPTION
We observe a set of M mass peaks, with masses given by
x = [x1, . . . , xM ]T . In addition, we are provided with a set
of C potential formulas with theoretical mass given by y =
[y1, . . . , yC ]T . For each of theM masses, we would like a posterior
probability distribution over the C potential formulas. Let the
indicator variable zcm equal 1 if we assign mass m to forumla c
and zero otherwise. We start by defining the following likelihood
(or noise model) to link the observed and true masses

p(zcm = 1|xm, yc, γ) ∝ N
„
xm
yc

˛̨̨̨
1, γ−1

«
i.e., the ratio of the two values is distributed as a Gaussian with
mean 1 and precision γ. This reflects the fact that measurement
error in mass spectrometry tends to be proportional to the magnitude
of the mass being measured. One of the benefits of the proposed
framework is that any noise model could be used here. For example,
if one wished to use a distribution with heavier tails, a laplace may
be more suitable. In this work we restrict ourselves to Gaussians,
determining the most appropriate distribution for this particular data
is an area for future investigation.

We now introduce the the C × C matrix W where wcc′ is 1 if
a relationship exists between potential formulas c and c′, and zero
otherwise. Typically this matrix will be rather sparse.

The novelty in this work is in the definition of a prior distribution
over the set of potential compounds based on this connectivity.
Sets of connected compounds are considered more likely than their
unconnected counterparts. Such a prior is defined over a complete
set of assignments from masses to formulas - i.e. if we collect the
C×M values of zcm into a single matrix Z, we are defining a prior
on p(Z) that cannot be factorised as

Q
c

Q
m p(zcm). Enumeration

of this becomes infeasible for realistic numbers of masses and
formulas. Fortunately, a common technique in the area of Bayesian
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inference allows us to overcome this computational bottleneck.
Gibbs sampling (for example, Gelman et al. (2004)) allows one
to generate samples from a posterior distribution by repeatedly
sampling values for each individual parameter (in our case each
zcm) conditioned on the other parameters . In this example, this
means sampling an assignment for the mth mass, conditioned on
the samples of the other M − 1 masses. Defining Z−m as the
set of assignments with the mth removed, we can factorise our
prior as p(Z) = p(Z·m|Z−m)p(Z−m) where Z·m is the column
corresponding to the assignment of the mth mass. When sampling
Z·m we are just choosing one of the C entries to set to one
and as such, the second term in this expansion p(Z−m) is just a
normalising constant and can be ignored.

In our prior, we choose to make the probability of selecting
formula c for mass m proportional to the connectivity of c to the
other currently assigned compounds, without the current assignment
for mass m. Mathematically, this connectivity can be computed as

βcm = Wc·Z
−m1M−1

= Wc·Z1M −Wc·Z·m

where 1j is a j × 1 vector of 1s and the second expression is an
alternative way of viewing it, with the second term removing the
effect of the current assignment of mass m.

Our conditional prior is thus defined as

p(zcm = 1|Z, δ) =
δ + βcm

Cδ +
P
c′ βc′m

with the smoothing parameter δ ensuring that we don’t get zero
probability for unconnected formulas and controlling the trade-off
between connectivity and mass.

Combining this prior with the likelihood, we obtain the following
distribution used to generate our Gibbs samples

p(zcm = 1|xm,y, δ, γ) =
N
“
xm
yc

˛̨̨
1, γ−1

”
P
c′ N

“
xm
yc′

˛̨̨
1, γ−1

” δ + βcm
Cδ +

P
d βdm

.

Each iteration of the sampler involved resampling the assignments
for each mass using the above equation. The samples can then be
averaged over a complete set of samples to obtain posterior values
for p(zcm = 1) as required.

c© Oxford University Press 2008. 1



Rogers et al

3 HYPER-PARAMETERS DETAILS
Our model includes two hyperparameters, γ (mass accuracy) and
δ (connectivity smoothing). Often, the approximate mass accuracy
of the mass spectrometer will be known. From this it is possible
to derive a sensible prior value for γ. For example, if the mass
measurements are expected to be accurate to 1ppm, and noting that
the noise is defined on the ratio between the two masses, we may
wish to choose a prior such that the expected value of variance,
γ−1 = ( 1

3
× 10−6)2, i.e., the standard deviation (σ−1/2) is such

that 99.9% of the probability mass is within ± 1ppm. A suitable
prior would therefore be a Gamma distribution (the variance must
be positive)

G(γ|a, b) =
ba

Γ(a)
γa−1e−bγ

with parameters a and b such that the expected value a/b =
( 1
3
× 10−6)−2, and a/b2 gives some suitable variance that reflects

the uncertainty in the quoted noise value. With a Gamma prior,
the Gibbs sampling distribution for γ is readily available and is
also Gamma distributed, as given in equation 1. This can be
easily incorporated into the sampling scheme described above, by
re-sampling a γs at each sample, using the current sample of
assignments, Zs.

The second hyper-parameter, δ acts as a smoothing parameter for
the connectivity term. In fact, we can think of it as the parameter for
a Dirichlet prior on a multinomial distribution over the components
of β. Imagine the values in β coming from βT1 draws from
a multinomial distribution parameterized by some vector θ =
[θ1, . . . , θc, . . . , θC ]T . Now, we can marginalize the parameter θ
to obtain p(β|δ) thus

p(βm|δ) =

Z
p(βm|θ)p(θ|δ)dθ

where p(θ|δ) =
Γ(
P
c δc)Q

c Γ(δc)

Y
c

θδc−1
c dθ

p(βm|δ) =
Γ(
P
c δc)Q

c Γ(δc)

Z Y
c

θβcm+δc−1
c dθ

=
Γ(
P
c δc)

Q
c Γ(βcm + δc)

Γ(
P
c βcm + δc)

Q
c Γ(δc)

.

In practice, we want the probability of the next sample from
this distribution – we have already observed the samples in βm,
so, conditioned on this and the Dirichlet prior, what are the new
multinomial probabilities? Assuming that we are interested in the
dth compound, and that adding one observation to the dth compound
gives us β, we have the form given in equations 2 to 5, where
we have used the identity Γ(x + 1) = xΓ(x). If we make the
assumption that δc = δ ∀c, then this prior is identical to the
conditional prior described in equation (1) of the main paper. The
use of a Dirichlet distribution to smooth a multinomial is common
in text processing (see, for example Zhai and Lafferty (2004)), and
can be thought of as adding δ pseudo-observations to each possible
multinomial outcome. This overcomes the problem of no probability
mass being assigned to compounds that cannot be created with the
current assignment. It is possible to add an extra layer of abstraction
and place a prior on δ. However, in this work we will assume it is a
fixed parameter defined by the user.

4 TRYPANOSOME EXAMPLE
4.1 Data generation
The measured masses from the Trypanasoma dataset reported
by Breitling et al. (2006) were matched to KEGG metabolites,
using a mass window of 10 ppm. Matching entries were
retrieved with the SOAP interface provided at the KEGG website.
All unique molecular formulas were selected and stored with
the mass. The automated matching was performed by the
MetabolomeExplorer software (Scheltema et al., in prep.) (available
from http://gbic.biol.rug.nl//supplementary/2008/MetabolomeExplorer/), using a
Java implementation based on the KEGG library (keggapi.jar,
http://www.genome.jp/kegg/soap/) utilizing the functions
search compounds by mass (retrieves all compound KEGG
ids within the provided mass range) and bget (retrieves all
information in the KEGG database for a given id). Dedicated
software was written to interpret the results from the bget function.
This process took several hours, mainly due to delays accessing
KEGG. The full annotation file is available for download at
http://www.dcs.gla.ac.uk/inference/metsamp/downloads/tryp10ppm.xls.

4.2 Transformations
The full list of chemical transformations can be downloaded from
http://www.dcs.gla.ac.uk/inference/metsamp.

4.3 Connectivity matrix
The connectivity matrix can be seen in figure 1. Of the ∼ 80000
possible connections (bearing in mind that connections are not
directional), only 343 are present (0.4%) suggesting an efficient
sparse implementation would be possible.
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Fig. 1. Connectivity matrix for the Trypanosome example.

4.4 Additional results
in Figure 2 we plot the probability of the most likely assignment
from the sampler against that from just using the likelihood (i.e.,
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p(γ|a, b,x,y,Z) = G
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p(β|βm, δ) =
p(β,βm|δ)

p(βm|δ)
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Q
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c Γ(βcm + δc)
(4)

=
βdm + δdP
c βcm + δc

(5)

mass alone). We can see that of the 63 peaks where the probability
changes (the remaining 383 peaks had equal probability under both
models), the majority (42) show increased probability under the full
model, corresponding to an increased confidence in the assignments.
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Fig. 2. Assignment probabilities based on the maximum of the likelihood
(mass alone) and the sampler (mass and connectivity). Of the 63 where the
probability changes, in 42 cases (67%) it is increased with the sampler.

4.5 Timing information
The Trypanosome data-set consists of 446 measured masses and
379 potential compounds. The transformation matrix was created by
exhaustively comparing each pair of potential compounds to the list
of allowable transformations. This step was implemented in Matlab
and took 19.8 seconds. The sampler was then run for 3000 burn
in samples and then 2000 further samples from which probabilities
were computed. This took 225.3 seconds (just under 4 minutes). It
is worth noting that the implementation is not particularly efficient
(unnecessarily compares each mass to all compounds, most of
which will have a likelihood of effectively 0 and does not use the
sparse properties of the connectivity matrix). The time taken to
generate the samples compares very favorably with the time taken
to generate the original list of potential compounds (several hours).
It is therefore practical to quickly compare several settings of the
hyper-parameters.
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