

Systems Biology 1

Deterministic Modelling

- Friday: 11-2
- Monday: 10-12, 1-2
- Both days: mixture of 'lecture' and 'lab' work.

• Friday

- Brief introduction to Systems Biology and modelling.
- Brief introduction to deterministic modelling with Ordinary Differential Equations
- Monday
 - Brief introduction to exact stochastic simulation with the *Gillespie algorithm*

- We will use a solver written in Java
- I'm assuming that everyone is happy with compiling and running Java code from the command line?
 - Speak now if not...
- We do not have much time: I strongly advise you to complete the lab exercises (and build other models) outside the official teaching time.

- On Moodle.
- They are not exhaustive.

What is Systems Biology?

The purpose of building a **model** of a **biological system** is to formulate in either a mathematical or diagrammatical manner, a **representation** of our **understanding** of the system. This process is useful in itself (it pulls together knowledge of the system into a single coherent place), but can also be used to test our understanding via making **predictions** of system behaviour that can be **verified** in the laboratory.

Q: can we gain knowledge from a model?

Types of model in SB

What is modelling? What is a model?

- For us, model = mathematical model
 - In particular, how things change over time.

[Two mathematical models describing how P behaves over time (t)]

What kind of equations?

- P = 2t tells us the value of P at any time, t.
- Our understanding of biological phenomena is not like this.
- e.g. reactions tell us how things change
 - things = species like proteins and other interesting molecules

$$\mathbf{A} + \mathbf{B} \xrightarrow{k_1} \mathbf{A} + \mathbf{B} + \mathbf{B}$$

What kind of equations?

• How things change = gradients

Ordinary Differential Equations

Ordinary Differential Equations define gradients instead of values.

Typically:

$$\frac{dP}{dt} = \dot{P} = f(P, t, A, Z, \ldots)$$

[the rate of change of P w.r.t t is a function of P, t, and other things]

$$\frac{dP_t}{dt} = \dot{P}_t = f(P_t, t, A_t, Z_t, \ldots)$$

[the rate of change of P (at time t) w.r.t t is a function of P (at time t), t, and other things (at time t)]

$$\mathbf{A} + \mathbf{B} \xrightarrow{k_1} \mathbf{A} + \mathbf{B} + \mathbf{B}$$

the amount that B increases at some time t depends on how much A is in the system at time t...

- Given a set of reactions
- we can define a set of differential equations
- which we can solve (on a computer)
- to tell us how much of each thing there is at any time t.
- There will be one equation for each species (e.g. protein) of interest.

- Our variables (e.g. P,A,B etc) are concentrations of things we want to model.
- Mathematically we treat them as continuous values - each one can take any value.
 - Q: implications of this? Assumptions?
 - [they should also be +ve]

Example: protein decay

• P = concentration of protein.

Q: what else do we need to know? Q: what does changing lambda do?

Protein decay

100

This particular differential equation can be solved **analytically**, the result, for an **initial concentration** of 100 can be seen below:

No useful models can be solved analytically. So we have to resort to numerically solving on a computer.

ODE Solvers

• Many packages exist.

Р

- Basic mathematical idea is quite simple.
- I've provided a [very] simple solver written in Java.

• Do not use for anything 'real'!!

More complex example

А В

Q: can you predict what will happen if you change k1 or k2?

From reactions to equations

$$A + B \xrightarrow{k_1} A + B + B$$
$$A \xrightarrow{k_2} 0$$

Q: how do the reactions change the species?

$$A + B \xrightarrow{k_1} A + B + B$$
$$A \xrightarrow{k_2} 0$$

Reaction 1 leaves A unchanged. Reaction 2 **decreases** A. Reaction 1 **increases** B. Reaction 2 leaves B unchanged.

Q: what are the main assumptions underpinning mass action?

Mass Action Example

What are the mass action ODEs for the following system of reactions:

Tip: one equation per species, not per reaction...

Run it

A B C

Other kinetic models

Try other parameter values in the lab

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

В

С

Other kinetic models II

- Michaelis-Menten:
 - Q: can you work out what real phenomena the parameters correspond to?

- We have (briefly) covered some of the ideas behind deterministic modelling with ordinary differential equations.
- In the notes, you'll see some exercises to try in the lab (now).
- After the lab, we will look over these exercises and possible move onto discussing data and parameter/model inference

Data

Note: what follows is another whole lecture...we will not cover it all!

To simulate, we need a model

- All simulations start with:
 - A model
 - Some parameters
 - Some initial conditions:

A + B	\rightarrow	2B + A
B + C	\rightarrow	2C
C	\rightarrow	Ø

 $A|_{t=0} = 1$ $B|_{t=0} = 50$ $C|_{t=0} = 50$ $k_1 = 0.25$ $k_2 = 0.0025$ $k_3 = 0.125$

- What if we start with:
 - A model and no parameters?
 - No model?

- Given a system, we can hypothesise a model.
 - e.g. I can hypothesise that proteins decay without necessarily knowing how fast this will happen (encoded as a parameter).
- Without parameters we can't simulate.
- But we can measure data.
- It would be useful if we could 'learn' parameters from measured data.

Recall our model of protein decay and the initial condition:

$$\dot{P} = -\lambda P \qquad P_0 = 1$$

• We measure some data in the lab:

Dr. Simon Rogers, School of Computing Science, University of Glasgow

- Two broad strategies:
 - Find the 'best' value point estimates

 $\lambda = 0.5$

• Find a distribution - *Bayesian inference*

Dr. Simon Rogers, School of Computing Science, University of Glasgow

What is λ ?

- Finding the 'best' value:
 - What does 'best' mean?

- To automate the process of finding the best curve, we need a formal definition of 'bestness'.
 - Non-statistical: e.g. squared error, absolute error (lower is better)
 - Statistical: e.g. *likelihood* (higher is better)

For a particular λ

- Compute the *squared* difference between the model and experimental data at the times when the data was measured.
 - Why squared?
- Add the values for all data points together. $=L(\lambda)$

• Mathematically speaking:

 $\arg\min_{\lambda} \ L(\lambda)$

- Find the value that minimises L
- How?
 - Guess lots of times and keep the best.

Squared error

• First 10 guesses (best is highlighted)

Squared error

• First 50 guesses (best is highlighted)

Squared error

• First 100 guesses (best is highlighted) $\lambda = 0.2933$

- Guess a value, compute L.
- Change it a bit, compute new L.
- If new L is better, keep new value. Otherwise throw it away.

Dr. Simon Rogers, School of Computing Science, University of Glasgow

- Many algorithms exist for optimisation.
- Most are smarter than these two.
 - Different ways of updating the parameters.
 - Necessary when problem gets more *complex*.
 - e.g. Finding best values of many parameters at once.
- Using simbiology in Matlab gives: $\lambda = 0.3$
- This is the 'correct' value.

- For any optimisation routine:
 - Each evaluation of L requires one model simulation.
 - For models with many parameters, we may require millions of evaluations!
 - Very slow.
 - Active research area.

Imagine doing the biological experiment twice

- Not the same why?
 - Stochasticity, contamination, measurement error

- Bayesian parameter estimation:
 - Some (me included) would argue that point estimates are misleading.
 - They represent a degree of certainty that is unjustified:
 - Repeat the experiment, value changes.
- Alternative: Produce a *distribution* over values.

Do the experiment lots of times...

- Repeat the experiment many times.
- Find the best value for each experiment.
- Histogram the results:

- More informative:
 - Tells us something about the uncertainty caused by things we can't measure

- We can get this *without* repeating the experiment.
- Instead, we make assumptions about the things we can't measure.
 - i.e. all things we can't measure, added together look like random variables of some particular type.
 - e.g. deviations from model (noise) are *Gaussian*

- Unfortunately (for you) it's hard not supported by SimBiology.
- Fortunately (for me) it's hard requires research.
- Other benefits:
 - It's possible to incorporate *prior knowledge*.
 - It's possible to rigorously compare how well different models explain data: *comparing hypotheses* (science!)
- Negatives?
 - Even more evaluations of L: even *slower!*
 - Normally requires expert tuning.

- What about learning parameters in stochastic models?
 - What kind of data would we need?
 - Single cell, molecule counts very expensive.
 - Microarray would be no good.
 - Discrete data causes problems in standard algorithms (non-smooth).
 - Even *slower* still.
 - Active research area.

No model and no parameters

- Comparing hypotheses:
 - Given some data, can we choose:

No model and no parameters

- (Many) people have also tried to rely more heavily on data:
- Search for statistical (not necessarily biological) relationships between species:

- If we have a model and no parameters, we can find them with data.
- Point estimates:
 - Easy (to understand and do).
 - Too certain.
- Bayesian inference:
 - Hard(er) (to understand and do).
 - Reflects uncertainty.
 - Needs additional assumptions noise.
- Can use data to compare models.
- Can use data to *build* models.