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1 Introduction and disclaimer

This is a very short introduction to some of the ideas behind modelling within Systems Biology. It is
in no way exhaustive. It includes some mathematics, but not much. It is meant as a starting point for
further study. Accompanying Java code to run the examples given in the text is available from Moodle
(along with the files that define the examples). Instructions on how to compile and run this code can be
found in the Appendices.
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2 What is modelling? What is a model?

The term model crops up all over the place, with different meanings. In our context it is used to describe
a mathematical model that tells us (in some sense) how the quantities of various biological quantities of
interest change over time. Here are two simple examples, for some biological species (e.g. a particular
type of protein) P :
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(b) P = 2t

In the first example, P is constant (it doesn’t depend on time, t). In the second it does, and increases
as time increases.

2.1 Why model?

The purpose of building a mathematical model of a biological system is to formulate in either a math-
ematical or diagrammtical manner, a representation of our understanding of the system. This process
is useful in itself (it pulls together knowledge of the system into a single place), but can also be used to
test our understanding via making predictions of system behaviour that can be verified in the laboratory.

Building on our simple example above, our second model says that there will be 20 units of P at time
t = 10. This is something that could be verified experimentally. If there are indeed 20 units then it
provides some evidence that our knowledge is good (note that it doesn’t prove it: many very different
models could be built that would predict 20 units at t = 10, and they cannot all be realistic!). If there
are not 20 units at t = 10, then there is something wrong with our current knowledge.

Note the careful choice of language in the previous paragraph: “. . . they cannot all be realistic.” I could
have said “. . . they cannot all be right.” but it’s important to realise that no model is every right. All
models are built upon simplifying assumptions and can therefore never perfectly represent the world.
This begs the question “how realistic does a model need to be?”. And the answer to this depends very
much on what you’re hoping to achieve through the modelling process. We will examine the kind of
assumptions that are made in more detail in the following sections.

2.2 Types of model

There are many types of model that are used in Systems Biology. Some involve time (as in our exam-
ples above) and describe how biological systems might behave, and some don’t. For example, a graph
(network) of protein-protein interactions would not typically model time (the network is assumed to be
static). We will concentrate on those that do incorporate time and look at two broad families – differ-
ential equation models, and stochastic models. However, it is worth noting that there are many others.
e.g.

• Systems of partial differential equations.
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• Temporal logic.

• Petri nets.

• Process algebras.

2.3 Differential equations

The examples given above use equations that tell us directly how much P there is at some time t (in the
first example, it is always 3, in the second it is always 2t). Unfortunately, useful modelling of Biological
systems is rarely so easy. In particular, it often makes more sense in biological systems to define how
the quantities of different species are changing, rather than the quantities themselves. This is typically
done by defining and solving differential equations.

We do not have time to go into much detail on differential equations here but I encourage you to read
more. There are many introductory textbooks that cover these topics.

A differential equation looks something like this:

dP

dt
= −γP

The left hand side is read as “the rate of change of P with respect to time (t)” (although it looks like a
division, it isn’t!) and the right hand side defines what this rate of change is. Some people also use Ṗ as
a shorthand for dP

dt .

The differential equations for our two examples above are:

Ṗ =
dP

dt
= 0 and Ṗ =

dP

dt
= 2,

respectively. In the first example, P never changes (it is always 3) and so its rate of change is 0. In the
second its rate of change is 2 (it increases by 2 units for every unit of time).

If we try and re-create the plots above using just the rate of change information we come across a prob-
lem. In particular, Ṗ = 0 just tells us that P doesn’t change: we also need to know the starting value,
P0 = 3. Similarly, in the second example we need to know that P0 = 0 to re-create the plot. These
values are known as the initial conditions.

Let’s now build a model of a more realistic but still simple biological example.

2.4 Example: protein decay

Consider a species of proteins (P ) that ‘live’ for a while and then spontaneously decay. The proteins
have a probability of 0.5 of decaying in a particular unit of time. In other words, for each currently
suriving protein, we can toss a coin at the passing of each time unit and if the coin shows ‘head’, the
protein decays. This suggests that after one time unit, roughly 50% of the proteins will have decayed.
After the next time unit, roughly 50% of the proteins that survived the previous time step will have
themselves decayed. Every time unit, the number of proteins will roughly half. This behaviour can be
seen in the following Figure, where we start with a concentration of 100 proteins (note that we’ve moved
to concentrations (i.e. proteins per unit volume rather than actual numbers – more on this later):

This is a common shape of function in the biological world (spontaneous decay is commonly assumed),
and corresponds to the following differential equation:

Ṗt = −λPt

where Pt means “the value of P at time t” (remember P0?) and λ is a parameter (in this case it is equal
to − ln(0.5), but the particular value doesn’t matter.)

Hopefully this equation makes some intuitive sense: Ṗt is always negative (the concentration of proteins
is always decreasing) and it decreases faster the more P there is (the more times we toss the coin, the
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more ‘heads’ we get). λ tells us how quickly P drops. The higher λ, the quicker the decrease. For
example, the following plot shows the same curve for a range of λ values – the higest curve has λ = 0.1
and the lowest has λ = 2:
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Note that λ is related to the probability of the coin showing heads, but isn’t exactly the same.

Now, given the differential equation:
Ṗt = −λPt

and an initial value, P0 = 100, how do we actually get the plot above? We need the values of Pt and not
the change in Pt. To translate from the latter to the former, we have to solve the differential equation. A
very small proportion of differential equations that you will meet within Systems Biology can be solved
analytically. That is, it is possible to write out an equation for Pt. This is one of those examples, and:

Pt = P0 exp(−λt).

In general, we won’t be so lucky and will have to resort to a numerical solver within a computer program
of which there are many available. The Java code provided here is an example of the most simple method
for numerically solving differential equations [more details in class; non-examinable]. It’s important to
note that this solver is very bad and should only be used for examples, and not any serious modellinga.

6



Using our solver, the results can be seen in the figure below. To generate this output, use:

>java DeterministicSolver decay 10 1e-2 1 out.txt

(see Appendices for explanation) and plot the results (out.txt) in your favourite plotting program.
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3 Deterministic Modelling

The protein decay example in the previous section is an example of building a Deterministic model.
The model is deterministic because when we solve the differential equation, we will always get the same
result. This is a very strong assumption – biological systems aren’t so well-behaved, but perhaps it’s
still a useful model?

In building this model, we also slipped in a few other assumptions:

• Deterministic. We have assumed that the system always behaves in the same way.

• It makes sense to measure proteins as concentrations. Implies that there are large quantities
of the species.

• There are no external influences. The system is not influenced by anything else.

• That the rate of decrease of protein concentration is proportional to protein concen-
tration.

We will discuss the limitations of these assumption in class, and later, when we consider stochastic sim-
ulations.

3.1 From reactions to equations

Our model will often be described by a set of reactions. For example our decay example is described by
the following reaction:

P
λ−→ 0

Here’s a more complex example:

A + B
k1−→ A + B + B

A
k2−→ 0

i.e., an A combined with a B creates an additional B in the first reaction. In the second, A decays. The
rates of the two reactions are k1 and k2. These are analogous to λ in the previous example. To describe
this system, we need two differential equations. One for A and one for B. A is involved in both reactions,
so it stands to reason that both could potentially change A:

Ȧt = change caused by reaction 1 + change caused by reaction 2.

Reaction 2 looks like our protein decay example, so we’ll use the same model we used there:

Ȧt = change caused by reaction 1− k2At.

Inspecting reaction 1, how does A change? There is one molecule of A on each side, so there is, in fact,
no change in A:

Ȧt = 0− λAt = −k2At
Moving to B, it is only involved in reaction 1, and when reaction 1 happens, a B is produced. We now
have to make an additional modelling assumption – how do the quantities of A and B affect the rate at
which this reaction happens? This most common assumption is mass action, where we assume that the
rate at which the reaction occurs is proportional to A× B (mass action is actually a bit more involved
than this, but it will do for our purposes). In other words, assuming mass action gives us the following
differential equation for B:

Ḃt = k1AB

Our system of ODEs is therefore given by:

Ȧt = −k2At
Ḃt = k1AtBt
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To complete our definition, we need initial concentrations (A = 100, B = 1) and rates k1 = 0.01, k2 = 0.5.
Running this model in our simulator gives the output shown in the Figure below. To produce this output,
use:

>java DeterministicSolver maeg 100 1e-3 1 out.txt

Exercise: extend this model to also incorporate decay of B, with rate k3 = 0.01. Question: what
assumptions make up the mass action model?

3.2 Mass Action Example: Lotka-Voltera Model

Consider the following system of reactions:

A + B
k1−→ A + B + B

B + C
k2−→ C + C

C
k3−→ 0

Taking the species in turn, and assuming mass action, we can derive a set of differential equations:
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A : A doesn’t change in any reaction, therefore:

Ȧt = 0

B : B increases in reaction 1 (with rate k1AtBt) and decreases in reaction 2 (with rate k2BtCt).
Therefore:

Ḃt = k1AtBt − k2BtCt

C : C increases in reaction 2 (with rate k2BtCt) and decreases in reaction 3 (with rate k3Ct). Therefore:

Ċt = k2BtCt − k3Ct

Using the initial conditions A0 = 1, B0 = 50, C0 = 50 and the rates k1 = 0.25, k2 = 0.0025, k3 = 0.125,
we obtain the following system behaviour when we solve the differential equations. To run this, use:

>java DeterministicSolver lotka 100 1e-4 1 out.txt

Notice that A remains constant (it has to: Ȧ = 0), whilst the other two species oscillate. It’s quite
complex behaviour from what is a very simple set of reactions.

Exercise: vary the initial conditions and rates and observe the changes in behaviour.
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3.3 Other kinetic models

In the previous example, we used the mass action kinetic model. Many others are used in biological
models. A popular one is the Michaelis-Menten kinetic model. For example, for the following reaction:

A −−→ A + B

the differential equation governing B with mass action would be:

Ḃt = kAt

With Michaelis-Menten kinetics, it would be:

Ḃt =
k1At
k2 +At

which requires two parameters: k1 and k2. In the example project mmexample, the following system of
reactions is encoded:

A
k1−→ A + B

A
k2,k3−−−→ A + C

A
k4−→ 0

where reactions 1 and 3 use mass action kinetics, and reaction 2 Michaelis-Menten. Using A0 = 100, B0 =
C0 = 0 and k1 = k2 = 0.1, k3 = 1, k4 = 0.1, we obtain the system behaviour shown in the next plot. To
obtain these results, use:

>java DeterministicSolver mmexample 100 1e-3 1 out.txt

Exercise: Experiment with varying the values of k2 and k3. What is their role?
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3.4 Practical exercise: gene regulation

1. The mRNA molecule mA is involved in the following two reactions:

0
bmA−−−→ A

A
dmA−−−→ 0

Write down the differential equation for ṁA (assuming mass action kinetics).

2. Write down the differential equation for ˙pA assuming the mass action kinetics and the following
reactions:

mA
kmA−−−→ mA + pA

pA
dpA−−→ 0

3. Simulate this system using a Deterministic solver, with the following initial conditions and rates:

mA0 = 0, pA0 = 0 bmA = 0.1, dmA = 0.2, kmA = 0.3, dpA = 0.25

Describe what happens.

4. (sightly more mathematical) Set your differential equation for ṁA to zero and solve for mA. Can
you relate this solution to your model output? Do the same for ṁP .

5. Add another two species to your model, mB and pB, with the following reactions:

0
bmB−−−→ mB

mB
dmB−−−→ 0

mB
kmB−−−→ mB + pB

pB
dpB−−→ 0

pA
kpA−−→ pA + mB

where all reactions are mass action. Use the following initial conditions: mB0 = pB0 = 0 and
rates: dmB = 0.2, bmB = 0.05, dpB = 0.25, kmB = 0.5, kpA = 0.2. Solve the system.

6. Change the last reaction to have MM kinetics with parameters 1,1. Experiment with these param-
eters and observe the change in the system.

7. Now change the final reaction to repression. Use the following kinetics (option 2 in the code):

VpA
pA+ kpA

And use the following initial conditions and rates: mA0 = 10, pA0 = 2,mB0 = 5, pB0 = 0,
bmA = bmB = 0.0, dmA = dmB = 0.2, dpA = dpB = 0.25, kmA = 0.3, kmB = 0.5, VpA = kpA = 1.

8. (thinking) Why would a repression function that looked like −kpA be bad?

9. (thinking) How could you make the model more detailed?

10. (thinking) How could you make the model less detailed?

11. (thinking) If you made predictions from this model, what kind of data could you generate to verify
it? Does this have ramifications in how you might model?

4 Stochastic Modelling

In the first half of this short course, we looked at deterministic models and, in particular, models described
by sets of differential equations. In this half, we will look at an alternative: Stochastic Simulation.
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4.1 From concentrations to counts

In the deterministic models we worked with concentrations and we put no restriction on what values
these concentrations could take. Consider a system where we have 1 molecule per unit volume. The de-
cay model we built earlier would happily tell us that after one unit of time, we would have 0.5 molecules
per unit volume. If we only have one unit volume in our system, this is nonsense – we can’t have half a
molecule! The deterministic modelling that we have done therefore looks decidedly dodgy when we have
small numbers of molecules.

Stochastic simulation overcomes this problem by working with integer populations for each species. For
the protein decay example, the state of the system at a particular time would be given by the exact
number of proteins that are currently alive. Stochastic simulation moves through time by explicitly
simulating each reaction in turn.

There are various algorithms around for doing this. We will use Gillespie’s algorithm (paper available
on Moodle).

4.2 Gillespie’s algorithm

For some set of species and reactions, what Gillespie does is work out how long it will be until the next
reaction, move forward this amount of time, choose which reaction should take place, update the species’
populations and then repeat.

What makes Gillespie stochastic is that the choice of time and reaction are done randomly. That is, the
Gillespie algorithm defines a distribution over the time and reaction from which particular instances are
sampled.

This is best seen with an example. Consider again our protein degradation. We start with, say, 100
proteins. Each protein has a degradation rate of λ which, in Gillespie’s world means that the time until
decay for each particular protein is exponentially distributed with parameter λ. You can think of this
distribution as a black box – you set the dial to λ and it throws out times. As you change λ different
times become more and less likely to be thrown out. So, staring at t = 0, we want to know how long
it is until the first protein decays. Fortunately, because each of the individual times comes from the
exponential box, we can get this time by setting our dial to 100λ (this is a property of the exponential
distribution). So, we take a time from this box, move forward that time, subtract one from the number
of proteins and then do it again, this time with the dial on 99λ, etc. When the number of proteins is
zero, we stop.

If we do this, we get the following output:

>java GillespieSolver decay 200 out.txt 1
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If we run it again, we get:

which is different! In fact, we can run it lots of times, and get a different result each time. This is because
the model is stochastic: it gives us realisations of what could happen in reality. Gillespie is also known
as exact : this is because it models populations exactly and generates trajectories that could happen in
reality.

Obtaining different values each time it is run makes the output of the Gillespie algorithm slightly harder
to interpret. Because of this, it is sometimes more useful to run the simulator many times and look at the
spread of populations at particular times. For example, in the Figures below we can see the distribution
of populations at t = 1 and t = 5 obtained from running the simulator 1000 times. To run the first one, do:

>java GillespieSolver decay 1 out.txt 1000
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(c) t = 1 (d) t = 5
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To fully explain the Gillespie algorithm, we need a system with more than one reaction. Consider the
following set of reactions:

A
k1−→ B

B
k2−→ 0

Using A0 = 100, B0 = 1, k1 = 0.1, k2 = 0.1, an example output from the Gillespie simulator is shown
below. To run this, do:

>java GillespieSolver simple 100 out.txt 1

In this example, we have N = 2 species and M = 2 reactions. We will use Xn to denote the current
count of the nth species. We will also use km to denote the rate of the mth reaction. Assume that we
are currently at time t. The Gillespie algorithm does the following:

• For each reaction, m, compute am = kmhm. hm is the number of reactant combinations, described
below.

• Compute a0 =
∑
m am

• Generate two uniform random variates, u1 and u2 (e.g. Math.random() in Java)
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• Compute the time to the next reaction as τ = (1/a0) ln(1/u1)

• Increment t to t+ τ

• Choose the reaction v such that
∑v−1
m am/a0 < u2 ≤

∑v
m=1 am/a0 (this is a long-handed way of

saying choose reaction m with probability am/a0.

• Update the populations according to reaction v

• Return to 1.

hm, is the number of reactant combinations - i.e. the number of combinations that can make up the left
hand side of the reaction. For example, in the example above, the number of combinants for reactions
one and two are A and B respectively. For the following reaction:

A + B
k1−→ C

there are A × B ways of combining an A molecule with a B molecule. One slight complication is that
reactions of the following type:

A + A
k1−→ B

has A(A−1)
2 combinations.

And that’s it – the Gillespie algorithm is very simple.

4.3 Practical exercise: Lotka Voltera with Gillespie

• Implement the model above, and plot histograms of the population at t = 5 based on 1000 runs.

• Take the Lotka-Voltera model described in the deterministic section and run it through the Gillespie
solver. What do you notice? Explain what you see. What does it tell you about choice of modelling
paradigms?

• To explore the limitations of the Gillespie simulator, implement the following model:

X + X
k1−→ Y

Y
k2−→ X + X

Using X0 = 100, Y0 = 1 and k1 = 1, k2 = 2. Run the Gillespie simulator until T = 50. How many
reactions are simulated? Plot the traces and also the histogram at T = 20. What do you notice?
Is all this computational cost worthwhile? Try increasing the rates, what is the effect?

4.4 Speeding up Gillespie Simulators

As we’ve seen in the previous exercise, Gillespie can get very slow. There are two ways in which to make
Gillespie faster:

1. Implement it very efficiently (can only get you so far).

2. Approximate it.

The latter option is popular and there are two key ways in doing this. Firstly, there is a technique known
as τ -leaping. This involves jumping forward a certain amount of time, and working out how many
reactions are likely to have happened in this time. The time step should be long enough to make an
efficiency saving (i.e. ¿1 reaction should happen) but short enough that the state of the system shouldn’t
change much in this time. For example, the following plot shows the dimerisation example looked at at
the end of the practical exercise. Throughout the simulation, there are ¿8000 reactions, but the state of
the system doesn’t change much. In this example, τ -leaping might be appropriate.
The second option is hybrid systems – model some parts of the system using a Gillespie system and some
parts deterministically (see lecture slides for example).
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5 Data and Parameter Estimation

5.1 Data

Up to this point, we have taken quite an abstract look at mathematical modelling for Systems Biology,
focusing on the mathematical techniques and not talking much about how one might use these things to
‘do science’. We have discussed assumptions which are clearly important from a scientific view (you can’t
draw conclusions which take you outside the safety zone defined by your assumptions). A second key
scientific point is how the model output can be compared with reality. There is little point in building a
model, the output of which cannot be compared with measurements of the world. Conversely, this sug-
gests that the measurements available have some bearing on the model construction and, in particular,
the level of detail at which the system is to be modelled.

The stochastic simulation algorithm introduced in the previous section generates predictions of popu-
lation counts. It can therefore be compared with data of this type (e.g. single cell protein count data
derived from flourescence experiments). It may not be a suitable modelling paradigm if the only data
available comes from complex mixtures of cells (e.g. DNA microarrays). On the other hand, a deter-
ministic model may be appropriate for data from mixtures of cells (it perhaps conveys something about
average cellular behaviour). I won’t list more examples here, but it is a key point in model development:
an intricate model is not much use if it cannot be compared with reality.

5.2 Parameter Estimation

In all of our examples, we have assumed that the parameters determining the rates of reactions were
known. This is obviously not always the case and one goal of modelling might be to try and determine
these parameters. Parameter estimation in Systems Biology is an open problem and one which (at the
moment) is fairly feasible for (small) deterministic systems and fairly infeasible for (any) stochastic sys-
tems. I’ll leave why this is to discuss in class.

All parameter estimation methods work in much the same way (although they can have quite different
philosophies – more of this next semester). Basically, they guess some values for unknown parameters,
solve the system, compare the system outputs with measured data and then guess some more values that
hopefully make the match between the system and reality better. We will discuss this further in class if
there is time.

Appendices

A Running Deterministic Java Solver

The deterministic java solver can be downloaded from Moodle2 DeterministicSolver.java. Move this
file to a directory of your choosing and compile with:

>javac DeterministicSolver.java

To run the solver, you use the following syntax:

>java DeterministicSolver project tmax dt trecord outfile

The arguments are:

• project the project directory (more later).

• tmax time to simulate up to.

• dt time step for the solver (should be small!).

• trecord time step for recording results to the output file.

• outfile name of a file in which to record the results.
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Alternatively, if you run the code with no command line arguments, you will be prompted to add the
various parameters.

A.1 The project directory

The model is described in three files within the project directory. You can only have one model inside
each project directory. The three files are species.txt,init.txt,reactions.txt:

• species.txt: a text file containing the names of the species. Each species should be on a new
line.

• init.txt: a text file containing the initial concentrations for each species. They should be in the
same order as the species in species.txt (terrible code!)

• reactions.txt: this is the meat of the project. It contains one line per reaction. The lines have
the following syntax: <reactiontype>:<lefthandspecies>:<righthandspecies>:parameters.
reactiontype is either 0,1 or 2 for mass action, MM, or repression respectively. lefthandspecies and
righthandspecies are lists (separated by commas) of the species on the two sides of the reaction. Do
not include any spaces, and make sure that the names are identical to those in species.txt. pa-
rameters are lists (separated by commas) of the parameters required by the reaction. For example,
the following reaction:

A + B
k−→ A + B + B

using mass action with k = 0.2, would look like:
0:A,B:A,B,B:0.2

For reactions with 0 on either side, this field is just left blank. e.g. for

A
k−→ 0

we use (with k = 0.2):
0:A::0.2

For repression and Michaelis-Menten the parameter on the top of the fraction is given first and the
two parameters are separated by commas. E.g.
1:A:A,B:0.2,0.3

corresponds to:

Ḃ =
0.2A

0.3 +A

A.2 Output

The output file is tab-seperated. The first column gives the time, and the remaining columns the species
concentrations. Each row is one time observation. The first row gives the species names. This data can
be plotted in anything (e.g. gnuplot, excel, etc). If you would like to use my plotting code, see Appendix
C.

B Running Stochastic Java Solver

The stochastic solver works in a very similar manner to the deteministic. In particular, the project
structure is identical. To compile:

>javac GillespieSolver.java

And to run:

>java GillespieSolver project maxT outname nRep

The only variable that is different here is nRep. If nRep=1, the system works in the same manner as
the Deterministic solver, placing the time series output in outname. If it is ¿1, the system runs the
Gillespie nRep times and stores the output at maxT for each repetition as a row in outname. As with
the deterministic solver, running with no arguments results in prompts for the necessary parameters.
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C OutputPlotter

Also available on Moodle is my Plotter.java. The build.sh file will compile for you, or just use the
Plotter.jar. If you provide no arguments, you will be prompted for the filename including the data
you wish to plot, the type of plot (a time trace of the system, or a histogram of the values produced by
running GillespieSolver with nReps > 1). If you choose histogram, you will also be asked for the number
of bins. Note that due to a bug in jmathplot.jar, you cannot generate a histogram if all the data is the
same, so you will not be able to plot a histogram of a constant species. To run from the command line:
>java -jar Plotter.jar outName trace

or

>java -jar Plotter.jar outName hist nBins
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