Using Negotiation to Reduce Redundant Autonomous Mobile Program Movements

Natalia Chechina, Peter King, and Phil Trinder
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, UK
{nc75, PJ.B.King, PW.Trinder}@hw.ac.uk

Abstract—Distributed load managers exhibit thrashing
where tasks are repeatedly moved between locations due to
incomplete global load information. This paper shows that
systems of Autonomous Mobile Programs (AMPs) exhibit the
same behaviour, identifying two types of redundant movement
and terming them greedy effects. AMPs are unusual in that,
in place of some external load management system, each AMP
periodically recalculates network and program parameters and
may independently move to a better execution environment.
Load management emerges from the behaviour of collections
of AMPs.

The paper explores the extent of greedy effects by simulation,
and then proposes negotiating AMPs (NAMPs) to ameliorate
the problem. We present the design of AMPs with a competitive
negotiation scheme (c(NAMPs), and compare their performance
with AMPs by simulation.

Keywords-mobile computation; load balancing; autonomous
mobile program; greedy effect; mobile agent; scheduling;
workflow management.

I. INTRODUCTION

Autonomous mobile programs (AMPs) are mobile agents
that improve execution efficiency by managing load; AMPs
are aware of their resource needs, sensitive to the execution
environment and periodically seek a better location to reduce
execution time [1]. AMP behaviour has previously been
investigated on local area networks (LANSs) using mobile
languages like Java Voyager [1] and using simulation [2].
Comparing the simulation results and observations of the
real system shows that simulated and real AMPs enter the
same stable states where no AMP can reduce its execution
time by moving. The differences between simulated and real
AMPs are minor and readily explained.

A key design aim for AMPs is to provide scalable dy-
namic load balancing. Experiments with real AMPs showed
that AMPs effectively perform decentralised load balancing
in a LAN; moreover, AMPs have the potential to scale to
very large and dynamic networks. However, analysis of real
and simulated AMP movements revealed the presence of
greedy effects [1]. Greedy effects are redundant AMP move-
ments during the balancing of loads between locations, and
are a result of locally optimal choices made by each AMP.
Although AMPs relocate autonomously, the greedy effects
we investigate directly correspond to thrashing behaviours
observed for programs relocated by conventional distributed

load managers, e.g. [3]. The fundamental reason for non-
optimal movements is that both systems have locally optimal
information.

The aim of the current paper is to examine properties and
features of the greedy effects in collections of AMPs and
expose their causes. We further aim to reduce the greedy
effects, and to estimate the extent of the greedy effects in
the modified algorithm using simulation. Detailed discussion
can be found in [4].

The paper is organised as follows. We identify two forms
of greedy effect (Section II), and examine the AMP greedy
effects on initial distribution and rebalancing experiments
(Section III). Analysis of types of movements shows that
the majority of redundant movements occur because an
AMP is unaware of the intentions and movements of other
AMPs. Thus, we discuss ways to reduce the greedy effects
and propose the concept of negotiating AMPs (NAMPs)
that communicate their intentions with the view to reducing
redundant moves. While a number of negotiation schemes
are possible, we have designed and simulated AMPs with a
competitive scheme (cNAMPs) (Section IV).

An analysis of simulated cNAMP results shows that even
this simple negotiation significantly decreases both the num-
ber of redundant movements and the time to rebalance. For
example, cNAMPs make no redundant movements during
initial distribution, making initial balancing in the experi-
ments at least three times faster than for AMPs (Section V).
A summary of the results and discussion of future work are
provided in Section VI.

II. GREEDY EFFECTS

An optimal rebalancing is a sequence of AMP movements
that is the minimum number needed to enter a stable state.
AMP greedy effects result in a non-optimal AMP rebalan-
cing with redundant movements. Greedy effects are a result
of AMPs making locally optimal choices, i.e. AMPs do not
possess sufficient and accurate global state information to
make the optimal movement decision. There are two types
of greedy effect: location thrashing and location blindness.
Both types are observed in real [1] and simulated [2] AMP
experiments.

Location thrashing results from an AMP’s lack of in-
formation about other AMPs that intend to move to the

same location. That is, two or more AMPs decide to move
on the basis of the same information about the target loc-
ation, which causes further AMP retransmission. Location
thrashing occurs in dynamic load balancing systems; other
terms are processor thrashing [5], task thrashing [6], task
dumping [7], transmitting dilemma [8].

Location blindness results from an AMP’s lack of inform-
ation about the remaining execution time of other AMPs.
The problem is not with poor runtime predictions, but rather
an inability to obtain accurate AMP runtime predictions at
distributed locations, i.e. the more accurate information that
is required, the more expensive it becomes to collect [9].
Location thrashing is the more harmful effect because it
increases AMP execution time.

III. AMP GREEDY EFFECT ANALYSIS
A. AMP Distribution Scenarios

To illustrate the greedy effect we first introduce the
following AMP scenarios that specify the number of AMPs
and locations, and types of locations:

Scenario 1: 25 AMPs on 15 locations with CPU speeds
3193 MHz (Locl — Loc5b), 2167 MHz (Loc6 — Loc10) and
1793 MHz (Locll — Locl5).

Scenario 2: 20 AMPs on 10 locations with CPU speeds
3193 MHz (Locl — Loc5), 2168 MHz (Loc6) and 1793 MHz
(Loc7 — Loc10).

Scenario 3. 10 AMPs on 3 locations with CPU speeds
3193 MHz.

For all scenarios Locl is the root location, where all
AMPs start. In the experiments we use large and small
AMPs which are matrix multiplication programs of 1000 X
1000, and 500 x 500 matrices respectively. The same scen-
arios are used in the experiments with real AMPs [1].

B. AMP Greedy Effect Experiments

The experiments are conducted on homogeneous and
heterogeneous networks. A homogeneous network is a set
of locations with the same available speeds, except the root
location, which may be different because of the overheads
of initiating the remote processes. A heterogeneous network
is a set of locations with different available speeds.

The main rule on the basis of which AMPs make a
decision to move to a new location is whether execution
time on the current location, 7}, exceeds execution time on
the new location, 7},, and communication delay, T¢omm:

Th > Tn + Tcomm- (1)

Each experiment is repeated eleven times. As the exper-
iments with the real system did not investigate the greedy
effects, we have not made systematic comparisons with the
real experiments, but the results are consistent where they
have been compared. The experiments are as follows:

Table I: AMP greedy effect experiment summary

Initial Rebalancing Large AMP

distribution after an AMP execution

termination time, (sec)
Config. Mean | Mean | Mean | Mean Stan-
No. time, No. time, Mean dard
redun. (sec) redun. (sec) devi-
moves moves ation
Scenario 1 64 60.4 6 22.5 173.8 | 7.66
Scenario 2 43 50.5 11 28.2 182.1 11.5
Scenario 3 13 26.8 6 14.1 232.6 | 991

1) Initial distribution experiment investigates the greedy
effects when large AMPs distribute themselves over the
network from a single location.

2) Rebalancing after an AMP termination experiment
measures the number of movements and time required for a
system to rebalance after an AMP termination.

3) Large AMP execution time experiment estimates exe-
cution time of large AMPs and measures its variability.

The simulation experiment results in Table I show that an
increase of the number of AMPs and/or locations causes
an increase in the number of redundant movements per
AMP during initial distribution. The dependence of the
number of redundant movements on the number of locations
and the total number of AMPs after an AMP termination
is less obvious. However, additional experiments where
AMPs have larger execution times show that the number of
redundant movements is directly proportional to the number
of locations and AMPs [4]. Therefore, to make systems of
AMPs scale, they must be adapted to minimise redundant
movements.

Figure 1 shows the initial AMP distribution between
locations in scenario 1 as the system rebalances from initial
(unstable) state Ul to stable state S. The arrows show
AMP movements. To make the Figure clearer we do not
indicate AMP movements from state Ul to state U2 with
lines because all AMPs move from Locl in state Ul to
Loc2 — Locb in state U2. There are 88 movements in total,

Initial AMP Distribution

T T
U: Unstable state A
S: Stable state P2

3

ut U2 U3 U4 us Us u7 us us uto L s P4

Slow

LOCATIONS
>EEEEEEEEEEEES

Middle
©00060006080+04IP>OONIXX+
i i R

Fast

L | L | |

6 7
TIME PERIOD

Figure 1: AMP initial distribution (scenario 1)

but if each AMP moved directly to the location it occupies
in state S there would only be 24, i.e. there are 64 redundant
movements.

The analysis of redundant movements allows them to
be classified into three main types: 1) two or more AMPs
move from one location to another, and then some of them
rebalance; 2) two or more AMPs move from a location, and
then some AMPs move back to the location; 3) two or more
AMPs move from different locations to one location, and
then some of them immediately move again.

Therefore, we conclude that redundant AMP movements
are mainly caused by AMP ignorance of intentions and
actions of other AMPs in the network and, hence, lack of
information to make a good decision, i.e. location thrashing.

IV. NEGOTIATING AMPS AND CNAMPs

To reduce the greedy effects we propose to use nego-
tiation, because the main reason for poor AMP movement
decisions is a lack of communication between AMPs, i.e. an
AMP does not request information about other AMPs, does
not provide information itself, and does not communicate
with other locations to make efficient movement decisions.

AMPs and load servers can provide information in dif-
ferent ways, such as malicious, honest, etc. A malicious
strategy would be for a load server to misrepresent the
load so that other AMPs were deterred from moving to a
location. An honest strategy requires AMPs and load servers
to share information to reduce wasted movements. Our belief
is honest behaviour is more effective to reduce redundant
movements. The modifications to AMP algorithm to provide
this behaviour are described in Section IV-A.

A. The Design of cNAMPs

cNAMPs are negotiating AMPs with a competitive
scheme, which announce their intentions to move and com-
pete with each other for opportunity to transfer to the new
location. Negotiation has many interpretations; the one that
is used in terms of cNAMPs is a “coordination among
competitive or simply self-interested agents” [10] (more
definitions can be found in the same source). cNAMPs do
not negotiate directly with each other, but by means of a
load server.

cNAMPs are designed only to reduce location thrashing;
and hence, eliminate redundant movements during initial
distribution and significantly reduce the number of redundant
movements during rebalancing (Table II in Section V).
Reduction of location blindness requires that cNAMPs and
load servers possess more information about locations and
other cNAMPs in the network.

Unlike an AMP, a cNAMP first sends a request to the
selected target location declaring a wish to move. The
request is also an agent which can be seen as a cNAMP
representative. On arrival to the target location the request
recalculates parameters, informs the target load server if the

decision is positive and moves back. Only if the request
confirms the movement decision does the cNAMP actually
move; otherwise the cNAMP continues execution locally.
When a request informs the target load server about a
cNAMP movement the load server reports the load as if
the transferring cNAMP had already arrived so each load
server maintains two values for the load: a) the actual load
which is the number of executing cNAMPs and is used for
local cNAMP calculations; b) the committed load which
represents the actual load of a location together with the
cNAMPs that have received permission to transfer to the
location, and is used by remote load servers. cNAMP and
load server pseudocodes are presented in [4].

V. COMPARATIVE CNAMP AND AMP PERFORMANCE

Table II reports a comparison of the greedy effects for the
experiments designed in Section III-B. For each scenario the
first and the second rows show results of AMP and cNAMP
experiments respectively.

The results in Table II show that even simple negotiation
in cNAMPs significantly reduces the number of movements
(4" and 6" columns) and time to rebalance (3" and 5"
columns). cNAMPs do not make redundant movements dur-
ing initial distribution (4*" column), and all scenarios show
at least three times faster initial balancing in comparison
with AMPs (3" column), e.g. dropping from 60.4s to 14.7s
in Scenario 1.

During rebalancing after an AMP/cNAMP termination,
cNAMPs make far fewer redundant movements (6" column).
The vast majority of experiments in scenarios 1 and 3
show that cNAMPs do not make redundant movements to
rebalance, and cNAMP rebalancing takes less then half
of the time of AMP rebalancing (5" column)., e.g. to
rebalance 19 AMPs take 28.2s, and 19 cNAMPs take 7.8s
in Scenario 2.

cNAMPs require less execution time than AMPs (7"
column). In experiments considered mean cNAMP execution

CNAMP Distribution

T
U: Unstable state
S: Stable state

u s
— Loc15 |

Loc 14

SEESEEEEES

Loc13

Slow

Loc12

+ e > 6 0O

L~ Loct1 |
— Loc10 | oo
Loc9 |- vo

Loc8 |- oo

LOCATIONS
Middle

Loc7 |- v

000060006080+ 04I P >OOMIXXE

SEESE5555555555

L~ Locs | am
— Llocs | oo
Locd |- *x0®

Loc3 |- e

Fast

Loc2 |- x6

L Loct |-onmmmmesememes -0

0 1
TIME PERIOD

Figure 2: Initial distribution and rebalancing
after a cNAMP termination (scenario 1)

Table II: Comparative summary of AMP and cNAMP
greedy effects

Rebalancing Large
Initial after an AMP/cNAMP
Configuration distribution AMP/cNAMP execution
and type termination time, (sec)
of experiment Mean Mean
Time, No. Time, No. Mean St.
(sec) redun. (sec) redun. dev.
moves moves
- AMPs 60.4 64 22.5 6 173.8 | 7.66
§ cNAMPs 14.7 - 59 - 104.8 | 129
v | Reduction | 4.11 64 3.81 6 1.65
‘\f AMPs 50.5 43 28.2 11 182.1 | 11.5
§ cNAMPs 124 - 7.8 1 113.6 | 9.43
»» | Reduction | 4.07 43 3.62 10 1.6
@ AMPs 26.8 13 14.1 6 2326 | 991
5 | cNAMPs | 85 - 5.6 - 1422 | 497
& | Reduction | 3.15 13 2.52 6 1.64

time is at most 3/5 of the mean AMP execution time,
e.g. mean execution time of 10 AMPs is 232.6s, whereas
mean execution time of 10 cNAMPs is 142.2s in Scenario 3.

Figure 2 shows initial cNAMP distribution. As before
we do not show the cNAMP movements from state Ul to
state S1. Figure 2 should be compared with Figure 1 in
Section III. More examples of a cNAMP distribution are
given in [4]. The results show that cNAMPs only display
location blindness (Section II), which does not increase
cNAMP execution time.

VI. CONCLUSION AND FUTURE WORK

We have shown that like other distributed load managers,
collections of AMPs exhibit thrashing, or greedy effects.
We identify two types of redundant movements: location
thrashing causes additional movements and increases AMP
execution time; location blindness causes only additional
movements (Section II).

We have simulated the greedy effects in an AMP im-
plementation, and shown that each AMP makes on average
five redundant movements during execution for the scenarios
considered. Although greedy effects have limited impact on
networks with a small number of AMPs, few locations, or
small AMPs, their effects increase as any of these factors
scale. The analysis of the redundant movement types and the
reasons they occur have showed that redundant movements
are mainly caused by location thrashing (Section III).

To reduce location thrashing we have introduced the
concept of negotiating AMPs, described and implemented
AMPs that negotiate with a competitive scheme, so called
cNAMPs. By negotiation we only mean a coordination
among competitive and self-interested agents. The key dif-
ferences between cNAMPs and AMPs are as follows: before
the movement a cNAMP sends a request to the target
location; and each location has two values for the number
of cNAMPs, one that is used by local cNAMPs, and another
that is published to other locations (Section IV).

cNAMP simulations exhibit only location blindness.
cNAMPs do not make redundant movements during initial
distribution, and all scenarios show at least three times
faster initial balancing in comparison with AMPs. During
rebalancing after an AMP/cNAMP termination, cNAMPs
make far fewer redundant movements, and the cNAMP
rebalancing takes less then half of the time of AMP re-
balancing. cNAMPs require less execution time than AMPs:
mean cNAMP execution time is at least 1.6 times less than
mean AMP execution time (Section V).

A mathematical analysis of location blindness on homo-
geneous and heterogeneous networks is in preparation to
estimate maximum number, and probability of, redundant
movements. In the longer term we plan to investigate
cNAMP behaviour on wide area networks.

REFERENCES

[1] X. Y. Deng, G. J. Michaelson, and P. W. Trinder, “Cost-
driven autonomous mobility,” Computer Languages Systems
and Structures, vol. 36, no. 1, pp. 34-59, 2010.

[2] N. Chechina, P. King, R. Pooley, and P. Trinder, “Simulating
autonomous mobile programs on networks,” in PGNet’09.
Liverpool, UK: Liverpool John Moores University, 2009, pp.
201-206.

[3] L. M. Ni, C.-W. Xu, and T. B. Gendreau, “A distributed
drafting algorithm for load balancing,” IEEE Trans. Softw.
Eng., vol. 11, no. 10, pp. 1153-1161, 1985.

[4] N. Chechina, P. King, and P. Trinder, “Reducing redundant
autonomous mobile program movements by negotiation,”
Heriot-Watt University, Edinburgh, UK, Tech. Rep. 0072,
2010.

[5] H. Kuolin, “Allocation of processors and files for load bal-
ancing in distributed systems,” Ph.D. dissertation, University
of California at Berkeley, USA, 1985.

[6] A. Ghafoor and I. Ahmad, “An efficient model of dynamic
task scheduling for distributed systems,” in COMPSAC ’90.
IEEE Computer Society Press, October 1991, pp. 442—447.

[71 A. Ross and B. McMillin, “Experimental comparison of
bidding and drafting load sharing protocols,” in DMCC 90,
vol. 2. IEEE Computer Society Press, 1990, pp. 968-974.

[8] M. Livny and M. Melman, “Load balancing in homogeneous
broadcast distributed systems,” in Proceedings of the Com-
puter Network Performance Symposium. New York, NY,
USA: ACM, 1982, pp. 47-55.

[9] T. L. Casavant and J. G. Kuhl, “Analysis of three dynamic
distributed load-balancing strategies with varying global in-
formation requirements,” in DCS ’'87. New York, USA: IEEE
Press, 1987, pp. 185-192.

[10] G. Weiss, Ed., Multiagent Systems. A Modern Approach to
Distributed Artificial Intelligence. Massachusetts, USA: The
MIT Press, 1999.

