Gannet: a Scheme for Task-level Reconfiguration of
Service-based Systems-on-Chip

Wim Vanderbauwhede
Department of Computing Science, University of Glasgow, UK

wim@dcs.gla

Abstract

There is a growing demand for solutions which allow the desig
large and complex reconfigurable Systems-on-Chip (SoCigat h
abstraction levels. The Gannet project proposes a furatiom-
gramming approach for high-abstraction design of veryd&gCs.
Gannet is a distributed service-based SoC architectarea inet-
work of services offered by hardware or software cores. Tar-G

net SoC performs tasks by executing functional task detsonip
programs using a demand-driven dataflow mechanism. The Gan-
net architecture combines the flexible connectivity offetyy a
Network-on-Chip with the functional language paradigm rteate

a fully concurrent distributed SoC with the potential to getely
separate data flows from control flows. In this paper we ptesen
the Gannet architecture and explain how Scheme can be used t
describe task-level configuration of a Gannet SoC. The fdaprer
duces the background for the work, presents the Gannet nechi

language and the compile process and explains how the Gannetry,

SoC executes task description programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors; C.l.#focessor ArchitecturgsParallel Ar-
chitectures

General Terms Distributed System-on-Chip architecture, Task-
level reconfiguration

Keywords Service-based System-on-Chip, Network-on-Chip

1. Aim

.ac.uk

2. Background
2.1 The need for high abstraction level SoC design

As integration density of integrated circuits increaselo¥ang
Moore’s law, it becomes increasingly clear that the curtents
and methodologies for the design and verification of vergdar
scale (VLSI) integrated circuits are not suited to explod tull po-
tential offered by the technology (productivity gap). Tgdaech-
nology allows entire systems (e.g. a microprocessor witmorg
and peripherals, but more importantly systems with largaber
of data processing cores) to be integrated on a single chipraev
only a few years ago such systems would have consisted of indi
vidual, packaged chips assembled onto a printed circuitdhdzor
that reason, there is a growing demand for solutions allgwn

cblesign complex Systems-on-Chip (SoC) at high abstractiosld

(Kulkarni et al. 2004; Lavagno et al. 2002).

This is even more the case for run-time reconfigurable system
ere are already a number of relatively high abstractioelle
tools for FPGA-based, statically reconfigurable systembefe
the configuration does not change at run time). Most of these a
based on C dialects with some support for concurrency (Hande
C, ImpulseC, SystemC) or on domain-specific languages @€nlk
et al. 2004). Run-time reconfigurable hardware currentbsdime-
grained reconfiguration mechanisms, using concepts suchras
text switching, differential bit file updates and reconfigjie in-
struction set processors (Hauck et al. 2004; Lam et al. 2B6&lera
and Vazquez 1998). However, none of these approaches gaali
high abstraction level. The low granularity at which configion
takes place is not well suited for very large systems cangjisif

The aim of this paper is to explain how Scheme can be used as alarge numbers of heterogeneous processing cores.

language for task-level reconfiguration of service-basgstedns-
on-Chip (SoCs).

Because the field of reconfigurable, heterogeneous muiki-co
Systems-on-Chip is very specialised and does not overlaghmu
with the field of functional programming languages, the pape
provides the necessary background about SoC architecflines
notions of task-level reconfiguration and service-basestedys-
on-Chip are introduced and applied to the Gannet serviseeba
SoC architecture. After setting the scene, the paper explidie

design flow for the Gannet SoC and discusses why Scheme is ag

suitable language for the purpose of task-level configomati

[Copyright notice will appear here once "preprint’ opti@réemoved.]

2.2 Networks on Chip

The main issues with very large SoCs are connectivity (bsethe
number of logic blocks on a SoC and the number of connections
per block is very large) and design complexity (because time-c
plexity of every individual logic block in a SoC is similar the
omplexity of a single chip in a conventional system) (Sgrtoél.
2001). Traditional bus-style interconnects are no longgrable
option: synchronisation of hundreds of processing cores lawvge
physical distances (on a SoC, the order of magnitud®ism or
evenl0~2m where on a conventional IC it would be rathér m)

is impossible; fixed point-to-point connections result gl wire
overheads. There is a consensus in the field that packethealit
Networks-on-Chip (NoCs) (Dally and Towles 2001) provide th
best solution to this interconnect bottleneck becausedfieyflex-
ible connectivity and an efficient mechanism for managingewi
(Benini and De Micheli 2002; Grecu and Jones 2005).

2007/8/23

results

v |

gateway

programs & data

Gannet
SoC

service
node

service
node

Network

service
node

service
node

service
node

service
node

core system

Figure 1. Gannet architecture

2.3 Design reuse

For very large SoCs, design reuse is essential (Stolbefga&Qb).
Design reuse is facilitated by the concept of what is gehetalled
“Intellectual Property” (IP) cores. These are highly coexplself-
contained processing units offering a specific functidpauch
as data acquisition units, audio/video codecs, cryptdyraores,
TCP/IP packet filtering etc. They can be implemented as harelw
logic circuits, as embedded microcontrollers running gesoft-
ware, or combinations of both.

2.4 Task-level reconfiguration and the service paradigm

Consider for example a handheld application, e.g. a mobitae:
the functionality of this type of device has increased sodiically
in recent times that a handset can perform a large numbeffef-di
ent tasks (camera, video, SMS, web browsing,...). To matieap
use of the hardware resources, and in particular to reduaemo
consumption, the system should be reconfigurable at run tivee
have proposed (Vanderbauwhede 2006a,b) a high abstrdetign
run-time reconfiguration mechanism called task-level négora-
tion. This mechanism organises the hardware blocks in teesy
as services, to be called on demand. Because of their setifioed
nature, treating IP blocks as services is a natural ab&tracthe
interaction between the services is governed by a taskigésar
program. The framework of this so-called Service-basedefys
on-Chip architecture effectively turns the SoC into a distied
processor which executes task description programs.

It is important to note that the system does not require a von
Neumann-style microprocessor (with a program counteistexg
and a shared memory) to execute the program. Instead, theapmo
is executed through the collective action of the Gannet éwaark
and the IP cores contained therein.

3. The Gannet service-based architecture

The Gannet service-based architecture (Vanderbauwhditia2y)
is atask-level reconfigurable systedtmat consists of a — potentially
large — number of IP blocks connected via a Network-on-Chig. (
1) . Every IP block is incorporated in service nodeAll service

(\) A\ Y O
]] i

O X o o o)
]]]

Q X O O o)
]]]

o > > " %
] Ul { L]
O O

O O O O 0]

D ::'i:!e(:x:_iéfh + NoC switch

Figure 2. SoC with on-chip network

local
memory

—

service
manager

configurable
service core

trans-
ceiver

service node

NoC
switching

service-based SoC node node

Figure 3. Gannet SoC tile with Service Manager

3.1 Functional task description language

Obviously, the functionality in such a system is not soledted-
mined by the functionality of each core. The way the coresraut
with each other is equally important. Thanks to the servieem
ager circuit, the data flow between the services — and copsdgu
the task performed by the system — can be described in a fmadti
way, using a Scheme-like language.

A simple example of a task (which we will use further on) would
be a system that takes images with 2 cameras and creates a 3-D
image based from the data:

(create-3D (cameral) (camera2))

Assuming that the system has the required IP cores that map to
these services, this example can actually be compiled asxlieed
on a Gannet SoC, as detailed in Subsection 6.3.

The key role of the service manager is to marshall the data
required by the IP core as well as the results produced bydiee ¢
In this way the service core is task-agnostic, i.e. it hasmntedge
of the overall task the system is performing. A service cargly/

nodes are connected over the NoC. Data and task configurationperforms a computation on a set of input data and returnsudt.res

programs enter the system via a dedicagatbwaycircuit.

In practice, the System-on-Chip will have a tile-based layo
(Fig. 2). Every service node forms a tile (a rectangular arfea
the chip) which is connected to the Network-on-Chip via aloc
switch.

To achieve service-based behaviour, every tile of a Ganv@t S
contains a special control unit (teervice manager which pro-
vides a service-oriented interface between the IP corelandyts-
tem (Fig. 3).

Each service manager, governed by its corresponding pahteof
task description program, determines where to requestataesohd
where to direct the result. The service manager does notfyribei
data in any way, it only directs the data flows.

3.2 Design Flow

Before we proceed to discuss the requirements imposed on the
task description language by the Gannet system'’s archigsolve
present the high-level design flow for a Gannet SoC (Fig. 4).

2007/8/23

Gannet SoC
framework
(NoC+Service

IP core
library

Task
description
program

(Scheme)

Managers)
IC design ggﬂﬁg & Gannet
toolchain Configuration Compiler
Gannet Gannet
[€«——| packet bytecode
loader packets
Gannet

SoC

Figure 4. Gannet SoC Design Flow

The design flow has a hardware and a software component.
Both are governed by a common description of the system and it
services. This description contains a list of the serviezpiired
by the system, the IP cores that will provide these servindglze
required configuration options for each core.

The hardware flow consists essentially of taking the IP cores
from a library, configuring them if required and placing thienthe
Gannet fabric. For most of the cores the IP core library plesi
a configurable layout template and a dedicated program thiat w
generate the final layout from this template.

The software flow essentially compiles a task descriptian pr
gram to a set of packets containing the bytecode to be exkbyte
the Gannet system.

3.3 Packet-based data transfer

Because the Gannet service-based architecture uses arkieto
Chip for all communication between services, all data tienss
are packet-based. In this section we discuss the Ganneetpack
structure.

3.3.1 Gannet packet

The unit of data transfer in the Gannet SBA is the packet, @eho
as

Packet:= p(Packet-type, To,Return,Label;Paylgad
The set of Gannet packet types is given by
Packet-type:=code| referencd data

Depending orPacket-typethe Payload can be arinstruction
(code), acode referencéref) or data(data). To andReturnare the
addresses of the destination and return servicaiselis a Gannet
symbol whose purpose will be discussed in Subsection 5.

3.3.2 Gannet symbol

An instruction is a flat list (further denoted with.)) of symbolsA
Gannet symbol is a structured byteword of a fixed number afdyt
The simplified structure of a Gannet symbol is:

Symbot:=[Kind:NameSubtask

Every symbol has a property call&dnd. The service manager
decides which action to take to process the task descriptised
on a set of rules related to the symbol kind.

The set of kinds and the meaning of its elements will be ex-
plained in Subsection 5.

The content of th&lameandSubtasKields depends on the kind.
In generalNameis a symbolic name for a service, reference, vari-
able or argumentSubtaskprovides information about the instruc-
tion to which the symbol belongs.

4. The Gannet language

The Gannet language is the equivalent of an assembly laedaag
the Gannet “machine”. By this we mean that a program written i
Gannet syntax can be transformed in machine code in a tviragl
The Gannet machine is defined as a set of service cores cednect
to a Network-on-Chip via a service manager. With this deaénit
the Gannet machine is eustom instruction set coarse-grained
distributed dataflow machindevery service core provides one or
more “instructions”. In the Gannet language this is repnee as
a function call.

Gannet syntax is an s-expression syntax completely frem fro
syntactic sugar. In BNF, a Gannet expression must alwayg obe

gannet-expression ::= (service-token argument-expoessi
argument-expression ::= (gannet-expression | lit¢ral

whereservice-tokemrepresents a particular service. Every ser-
vice in the system has a correspondsgyvice-tokerin the pro-
gram. There are no other keywords in the language, i.e. al flo
control constructs are provided by services. The use ofabser-
vices to provide “language” features is discussed in deteec-
tion 7; however, for a better understanding we will first diss the
compilation process and the execution model. An operdtisea
mantics for the Gannet language is presented in (Vandetasv
2006b).

5. Compiling Scheme into Gannet packets

This section presents the flow for compiling Scheme into @ann
machine code, but first provides a justification for the caadt
Scheme as high-level task description language.

5.1 Why Scheme?

As explained above, Gannet is a functional assembly largutig
not meant as a language to write the actual task descrigtioBg-
cause of Gannet’s functional nature, a functional higbeell lan-
guage is a natural choice for this purpose. As we will see io-Su
section 5.2, Scheme is not only syntactically but also s¢icedly
very similar to Gannet, which makes it an obvious choice. édor
over, Scheme is already popular with CAD vendors and toakuse
two of the leading companies, Synopsys and Cadence, made-ext
sive use of Scheme in their tools. Synopsys has embedded\tble G
Guile interpreter while Cadence has its own Scheme dialgled
SKILL (Petrus 1993).

It should be stressed that it is not the aim of Gannet to imple-
ment the full RR Scheme. The purpose of Gannet is to configure
SoCs at service level, and the high-level language must $uzffie
cient features for this task. For example, while supporhfonbers
is required for purposes of flow control (see Section 7), sufor

1The complete definition iSymbol:=[Kind:ResQuotedExt TaskNameSubtask symbols of different task running simultaneously on thetesys Quoted

Resis reserved for future usefaskis used to distinguish between the

andExt will be introduced in Subsection 7.1.

2007/8/23

strings is not required, nor is any type of OS interactionluding
1/0.
5.2 Compilation flow

The Gannet "machine" procesgeasckets Consequently, the task
description program will be compiled into packets.

Compilation of Scheme into Gannet packets is straightfaiwa
and consists of the following steps:
1. Transform the Scheme code into a core subset

The subset supported by the Gannet system consistsibfia,
let, let*, set!, if, list, cons, car, cdr, length, eval,
and literals (including quoted expressions), variablebcails.

. Transform the code into Gannet syntax
. Decompose the Gannet code into an abstract syntax tré) (AS
. Flatten the AST through reference substitution

ga b~ WODN

. Create a packet for each flattened node

Consider for example the following program:
(begin
(define (fact n acc)
(if (< n 1)
acc
(fact (- n 1) (* acc
(fact 5 1))

n))))

1. This will be transformed into
(let
((fact (lambda (n acc f)
(f (- n 1) (* acc n)
(fact 5 1 fact)
)
2. Using the following rules:
(a) (let ((v (expr))+) (body)
= (let (assign'v (expn)) + (body))
(b) (lambda(arg+) ((body)))
= (lambda’arg+’ ({body)))
(c) ({ lambda-def arg+)
= (apply { lambda-def 'arg+)
(d) (if (cond (exprd) { expr2)
= (if (cond '(exprd '(exprd)
the expression can be transformed into Gannet syntax:
(let
(assign ’fact
(lambda °’n ’acc ’f ’(if (< n 1) ‘’acc
>(apply £ (- n 1) (* acc n) ’f))))
(apply fact 5 1 ’fact)
)

3. This expression is parsed into an AST which (slightly simp
fied) looks like this:

(if (< n 1) acc
£)))))

[E:([S:let]
[E:([S:assign] [QV:fact]
[E:([S:lambda] [QA:n] [QA:acc] [QA:f]
[QE:([S:if] ([S:<] [A:n] [QL:1]) [QA:acc]
[QE:([S:2pply] [A:f] [E:([S=] [An] [QL:A])]

[E:([S:*] [Azacc] [A:n])] [QA:A])DD])
[E:([S:apply] [V:fact] [QL:5] [QL:1] [QV:fact])])]

E denotes an expression; the other uppercase letterse diaote
symbol kind of the token which they prefiXhe set of kinds is:
Kind::=S| R| L| V| A|QS|QR|QC|QV| QA
S for service,R for references, L for literals, V for let-
variables A for function argumentsQ denotes a quoted entity.
As in Scheme, quoting turns expressions into literals. Taer-G
net quoting mechanism is explained in Subsection 7.1.

4. By recursively substituting references for expressions

[E:([S:x]arg+)] = [R:x:i]
the AST is flattened into a lookup table with the reference
symbol as the key and the expression as the value :

[R:let:0]: [E:([S:let] [R:assign:1] [R:apply:2])]

[R:assign:1]: [E:([S:assign] [QV:fact] [R:lambda:3])]
[R:apply:2]: [E:([S:apply] [V:fact] [QC:5] [QC:1] [QV:fact])]
[R:lambda:3]: [E:([S:lambda] [QA:n] [QA:acc] [QA:f] [QR:if:4])]
[R:if:4]: [E:([S:if] [R:<:5] [QA:acc] [QR:apply:6])]
[R:<:5]: [E:([S:<] [A:n] [QC:1])]

[R:apply:6]: [E:([S:apply] [A:f] [R:-:7] [R:*:8] [QA:f])]

[R:-:7]: [E:([S:-] [A:n] [QC:1])]

[R:*:8]: [E:([S:*] [A:acc] [A:n])]

5. This table is transformed into a list of packets using theke
rule:

[R:x:n] : ([S:dest]..)
= p(code dest GW, [R:x:n]; ([S:dest]..))

Here GW indicates the address of the gateway node, i.e. a
special NoC node which acts as the gateway to the outside
world (see Section 3). The change frgm) to (...) is purely

for readability.

6. Code execution on a Gannet SoC

As discussed in Subsection 5, a Gannet task descriptiorrgog
consists of a set afodepackets (packets which contain an instruc-
tion) which enter the system via a gateway circuit. Thiswgtrallo-
cates memory for the result and passes the packets on to the No
which delivers them to their destination services wherg e
stored until they are activated for execution. The gatewen acti-
vates the root task (top node of the computational tree) bgiag

a referencepacket (a packet with a reference to the code for this
task) to the corresponding service. The service managbisoeér-
vice delegates all subtasks to the corresponding sendcgsn by
sendingreferencepackets). In turn, the requested tasks repeat the
process until the lowest-level tasks (whose arguments @treefr
erences) are reached. The results are propagated up thentiee
the final result returns to the gateway. The mechanism isisatie
cally depicted in Fig. 5, with the “cloud” denoting all seres in the
system. In practice, the system will run a large number dstas
parallel. The actual number depends on the amount of local-me
ory allocated at every service for storing task packetshénrtext
sections we will discuss this mechanism in detail.

6.1 The service manager architecture

The Gannet architecture is aimed at System-on-Chip desighs
a large number of heterogeneous IP cores, few of which — if any
— will be actual microprocessors. To manage the flow of data

2007/8/23

Reference packet

Called

Calling o

Service Result packet

Code
packet

Reference

packet Result

Reference | [hacket

Result packet

packet Code

packet

System =

Gateway all services

Figure 5. Gannet program execution

FIFO
T{XHE

FIFOs

demux

910D 3JINIBS

local
mem
access

data code task
lookup lookup list

!

Figure 6. Service manager schematic

and instructions between the IP cores that provide the cesyi
every IP core interfaces with the system through a dedidatgid
circuit called theservice manageits design philosophy is based
on simplicity and minimal action: the service manager muwst b
small, fast and resource efficient. A simplified design ofgbevice
manager is schematically represented in Fig. 6.

The circuit processes Gannet packets using a pipelined- arch
tecture. An input demultiplexer directs the incoming paskato
FIFOs per packet type. Packet processing is event-driief]-a
FOs are processed in parallel. The figure shows the procgisim
for the main packet typesdde ref anddatg). Code packets are
stored in a code store. The payload of data packets is storbe i
data store. Reference packets result in activation of spamding
tasks from the code store. Processing of the instructiatstie the
payload of theaskpackets (activated code packets) results in cre-
ation and dispatch of reference packets to other servidesnéxt
section presents a more detailed discussion of the senaoager
functionality.

6.2 Rule-based instruction processing

For the purpose of this paper, we can use a more abstract widel
the service manager as a system that interfaces betweeegttierk
and the service core:

¢ On the service core side, the service manager will notify the
service core when all data required for processing are prese
and will receive a notification from the service core when the
processing is finished and the result is available.

e Onthe network side, it can receive and transmit Gannet pecke

Based on the type of packet, a particular action will be takére
smallest set of packet types and corresponding actions is:

e codepacket=- store packet
¢ referencepackets- activate corresponding code packet
o datapackets store packet payload

Apart from the actions triggered by arrival of packets, ¢hare 2
other actions which correspond to the interaction with theise
core:

¢ all required data presert notify service core

e service core ready-take result (data) from the service core and
transmit over the NoC

The only non-trivial action is taken on receipt of a refeepacket.

This is a packet which contains the local memory address &fcep

of code to be executed by the service manager. As descrilozg ab

a Gannet program is compiled into packets the payload oftwhic
consists of bytecode representing a node in the AST. Onagictiv

of a code packet, the Service Manager parses the bytecode in a
linear single-pass way, taking actions based on the kingirabsl.

In general terms, the semantics of a Gannet service (which
consists of a service manager and a service core) can betaescr
in terms of thetask codethe internalstateof the service and the
result packeproduced by the task as follows:

1. Initially, a serviceS; receives a&odepacket
p(code Si, S, riask; (Si a1...an)). The task is stored and ref-
erenced by;q sk

2. Later, the servicé; in state receives a taskeferencepacket
p(ref7 Si7 S]'v Tid; TtllSk)
(Note that “later” is not essential: if the reference arsiearlier,
activation will occur as soon as the code arrives.)

3. The service activates the task referenced:bys: (s; a1...an).
This results in evaluation of the arguments..a., .

4. The service, now istate ’, produces a result packet
p(Type, S;, Si, ria; Payload) where bothPayload and the
state change tstate ' are the result of processing the evaluated
arguments; ...a, by the core ofS;.

5. This packet is sent t8; wherePayload is stored in a location
referenced by:;4.

Note that the payload can be either data or an expressioneWhi
in general data processing services (typically providetPogores)
will return data, control services can return data, bytecadrefer-
ences to code.

6.3 Gannet code execution: an example

Returning to the example from Section 3, a system that takes
images with 2 cameras and creates a 3-D image based from the
data can be described as:

(create-3D (cameral) (camera2))

This will be compiled into

Po: p(ref,create-3D,GWri; 1)

p1: p(code,create-3D,GWr1; (s1 72 73))

p2: p(codg camera, GW, r2; {s2))

p3: p(code camera, GW, GW, rs3; (s3))
ith

S1: [S:create-3D]

s2: [S:camera]

53 [S:camera]

2007/8/23

1 [R:create-3D:memadd}

ro! [R:cameral:memadgl

r3: [R:camera2:memadgly

The symbolsr;,r5,r5 contain the memory location at which the
result of the task should be stored.

The gateway circuit will take the packets and transmit thEne
NoC will deliver them to the corresponding services.

In accordance with the above rules, the code packets will be

stored and code packefl will be activated. Note that it doesn’t
matter if the reference packgt would arrive beforep; is stored:
the action will simply be deferred by the service manageil wnat
is present.

Activation of p; results in parsing of the list of 3 bytewords

(s1r27r3). The first words; is a service symbol (S), used to select

the service to be performed by the service core. This is lsecau
single service core can provide multiple services. The mext

is a code reference symbol: the value of the first field (R)-indi
cates this. The second and third field indicate the servide iaol-

service would need to alloca® — 1 memory locations. By in-
troducing functions, lexically scoped variables and thesgility

of sequential evaluation, we can reduce the code size ancdbrgem
requirements. Obviously, the use of recursive functiongiires a
conditional branching control (if) to exit the recursiodnpther
obvious consequence is that we need support for numbersin th
language. Using Church numerals to count e.g. a humber ref ite
ations would be very inefficient.) The above example migkenth
become:

(letrec ((recS (lambda (m_ n_)
(if (< n_ 1)
(S m_ m_)
(recS (S m_m_) (- n_ 1))))))
(recS m n))

Furthermore, it is likely that some services will produceltiple
results and that these results may be required by more than on
service. For example, consider the inverse of the createesiice,
which would take a 3D image an return two 2D images, destined

dress and the memory address where the code is stored. Fgr eve for say the left and right display of a 3D headset. It is cléat this

code reference symbol, the service manager dispatchesrameé
packet to the corresponding service. Thus for the given pl@m
service manager will dispatch

p(ref, camera, create-3D r5; r2)

p(ref, camera, create-3Drj; r3)

p'r‘2:
p'rS:

Arrival of these packets will trigger activation of repp andps
As both the camera tasks containegbinandps don’t take any

arguments, the service manager does not need to request®r st

any data. The service cores will simply acquire a picture fzantd
the resulting data over to the service manager. The senacager
will transmit the data as a result packet to the caller, is t@se
create-3D:

Daz’ p(data create-30 camera; ry; (picture,))

Pas: p(data create-30 camera; r3; (picture,))

Arrival of ps2 andp,s will trigger the store data packet action.

can’'t be expressed as a pure functional dependency. But we co
easily write

(left-eye (car (2Dfrom3D

(3D-image (cameral) (camera2)))))
(right-eye (cadr (2Dfrom3D

(3D-image (cameral) (camera2))))))

To summarize, the service-based architecture requirdsot@on-
structs to improve its performance. The set of control qoiess for
the Gannet system is as follows:

e Functions:lambda, function applicationdpply)

e Conditional branchingif

e Lexical scoping: providing scopé4t, 1et*), variable binding,
variable calling

e Lists:1ist, cons, car, cdr, length
e Quoting anceval

When the service manager has marshalled all data required by

the service core, it notifies the core. The service core thecegses
the data and produces a result. The resulting data are hbad&d
to the service manager.

The service manager will transmit the data as a result packet
the caller, in this case, as this is the final computationgtdteway:

Da1’ p(data, GW, create-30 r1; (3D-picture,))

The gateway stores the payloadmf atr].

7. Control services: flow control and performance

In practice, the system requires the ability to control theadlow.
For that purpose, a number of additional services must becadd
to the system. They provide familiar functional programgnian-
guage constructs such as if, lambda, let. It can be easilyodem
strated (Vanderbauwhede 2006a) that without control sesvihe
performance of the system would be sub-optimal. As a simple e
ample, consider a service that takes two arguments and ekdsn
call itself recursively n times:

(s (s(s...) (8...0) (8(5...) (8..9))

Without any additional constructs, this would resulRih— 1 code
packets. Furthermore, on execution, memory has to be &didca
for every call. As all calls are effectively dispatched imgdgel, the

Because all functionality in the service-based architects pro-
vided by services, all control constructs must be provideddn-
trol services. The consequences for the Gannet languagéoand
the Service Manager architecture are discussed in the eetos.

7.1 The Gannet quoting mechanism: deferred evaluation

The ruleset of the service manager results essentiallyailuation

of all arguments of a function before they are passed on to the
function body. The reason for this is that the IP cores piiagid
the services will in general not be able to handle Gannet s{gnb
which is what the unevaluated arguments are. Consequartby)

to e.g. thelambda service(lambda x (S x)) would result in(S

x) being called, which is obviously not the intention.

For that reason, we introduce a mechanism to defer evatuatio
of arguments. Thigjuoting mechanism simply marks a symbol
as a literal to be stored as datdhus, on encountering a quoted
symbol (as indicated by the symbol kind), the service manage
action will be to store the symbol. Numerical literals areeated
by the compiler as quoted symbols, so the service manager doe
not need specific extensions to support numBers.

2 A symbol is marked as quoted by setting eotedbit.

3 A Gannet symbol can consist of several byteworegtgndedsymbol).
This is indicated by th&xt bit. If Extis 1, theNamefield will contain the
number of additional bytewords.

2007/8/23

The Gannet quoting mechanism is very similar to Scheme’s.

The difference is mainly that in Gannet, only individual $yots
can be quoted: quoting expressions results in a quotederefer
symbol. However, the compiler handles this difference dpamn-
ently. For example, consider the Ganeeal service:(eval °’ (+
2 3)) is compiled into([S:eval:1] [QR:+:1]) and[R:+:1] refers
to ([S:+:1] [QL:2] [QL:3]).

7.2 Functions

In a Gannet system, function application is performed byfiiay
service. Thus

((lambda (n) (S n)) expr) ; Scheme
becomes
(apply (lambda ’n ’(S n)) ’expr) ; Gannet
The reason whyxpr is quoted is explained in Subsection 8.2.
7.3 Conditional branching

In many (even most) cases, it is not desirable to evaluate bot
branches of an if-statement before choosing one. Constygée
Gannetif becomes

(if (Scond ...)

7.4 Variables

Gannet requires a service for providing scope, variabldibgand
variable calling:

’(S1 ...) (82 ...))

Gannet

(let ((a (81 ...)) (b (S2 ...))) (S3 a b)) ; Scheme
becomes
(let (assign ’a (S1 ...)) (assign ’b (52 ...))

(S3 (read ’a) (read ’b))) ; Gannet

This is an example of a service core providing multiple sm9j as
clearly the memory for storing the variables must be shayeikb,
assign andread: a service core can only access its local memory.
For variable updates, this core also providessiée! service.
Gannet does not provideetrec, So recursive functions must
be passed explicitly as arguments:

(let ((fact (lambda (n a f)
(if (<n1) a (f (-n1) (* an) £)))))
(fact 5 1 fact))

7.5 Lists

Gannet lists are different from Scheme lists in that list&amnet
are not built from pairs. The only list constructor is thest
service. Furthermore, in Gannet, a quoted list of express®not

the same as a list of quoted expressions. This is a consezjuenc

of the fact that only individual symbols are quoted, not thaual
expressions. Thus for example

(1 (+ 2 3) (+ 45) 6 7) ; Scheme
will be translated by the compiler to
’(+45) 67) ;

The translation consists of

(list 1 ’(+ 2 3) Gannet

1. Replacing quotes by thei st operator (in Scheme)
2. Quote all list arguments (in Gannet)

The list operationscons, car, cdr and length behave like
Scheme’s.

8. Gannetis not quite Scheme

There are a number of aspects in which Gannet differs from
Scheme. The reason for all differences lies in the natureanin®t

as a task description language for a SoC services providadroly
ware blocks, as opposed to the general-purpose nature efri&ch
as a language intended to run on a von Neumann-style micropro
cessor system. In particular the distributed nature of ffstem,
with effectively no global memory, and the separation oLiangnt
evaluation by the service manager and computation by thvécser
core result in a different code execution model. Furtheemtre
service manager is meant to be a small circuit with very kit
memory. This puts additional constraints on the language.

8.1 Restriction on lists

For practical reasons, Gannet lists can only consist of sjgnb
Consequently, any expressions not returning a symbol dhioeil
guoted. This means that in practice

(1ist (cameral) (camera2)) ; Scheme and Gannet

is not allowed as both services return non-symbol data, but

’((cameral) (camera2)) ; Scheme

and

'((+ 1 2) (+ 3 4)); Scheme

are fine, as the latter are translated to

(1ist ’(cameral) °’(camera2)) ; Gannet
and
(list *(+ 1 2) °(+ 3 4)) ; Gannet

respectively.

The reason for this restriction is that IP cores can potytia
generate large amounts of data. As the service manager b$the
service will evaluate all arguments, the resulting list afadcould
be very large. Storing and transferring lists of values ddbkre-
fore be very inefficient, costly (in terms of power consurapjiand
slow and should therefore be avoided.

8.2 let versuSlambda

In Schemelet is syntactic sugar forambda. In Gannetlet and
lambda have similar semantics but a different implementation. A
single service provideset, assign, set! andread. This service
actually binds variables to local memory locations. Consedjy,
set! can be used to update the content of a memory location.

Functions are provided by two different servicasimbda,
which essentially constructs a list, aagply. Theapply service
does not bind the lambda arguments to memory locationeddst
it simply substitutes th@ambda argument symbols with thepply
argument symbols (which therefor need to be quoted).

The reason for this behaviour is again that transferingelarg
amounts of data over large distances (in SoC terms) is cstly
terms of power consumption) and slow. Consider a triviahepie:

(81 (apply (lambda ’x ’(S2 x)) (S3)).

Binding would result in the data being actually, physicaigns-
fered over the NoC frorS3 to apply, and then fromapply to S2.
This would be the case for every call 4pply, as there is only a
singleapply service. Clearly, this would result in a serious bottle-
neck. With the substitution semantics,

(S1 (apply (lambda ’x ’(S2 x)) ’(S3))

results in the taskS1 (S2 (S3))). The data are sent straight
from S3 to S2, soapply is not a bottleneck.

8.3 Closures

Because memory utilisation in SoCs must be minimised, Ganne
does not support closures that captueg-variables. The reason

is that a capturedet-variable would escape from thet block

and it would in general not be possible to reclaim the memory
for this variable. This restriction is again motivated bgaerce
constraints: storing a full environment would consume aadbt

2007/8/23

the service manager’s limited memory. However, becausédam
application works by substitution, closures witimbda instead of
let are supported. For example:

(let (assign ’x 5) (lambda ’y ’(+ x y))

is not supported: the memory for x would be de-allocated au-le
ing thelet; however,

(apply (lambda ’x ’(lambda ’y ’(+ x y))) 5)

returns(lambda ’y ’(+ 5 y)). If the value is a quoted expres-
sion, the code reference is substituted.

8.4 Concurrent evaluation

A key feature of the Gannet system is that all arguments of a
function are effectively evaluated in parallel. Considegy. e

(S1 (S2 (S3 (sS4 1 2) (S5 3 4))
(S6 (S7 5 6) (S8 7 8)))
(S9 (S10 (S11 9 10) (S12 11 12))
(S13 (S14 13 14) (S15 15 16))))

This (admittedly contrived) example will result in pardlexecu-
tion of all 8 leaf calls, then of all 4 dependent calls, etcnQar-
rent evaluation makes optimal use of the inherent paraftetif the
SoC (all hardware cores operate always in parallel), regudu-
tomatically in the fastest execution. However, it requitlest the
program is not sensitive to the evaluation order. This isiatt
a more stringent requirement than Scheme’s serial-bytagifed
evaluation order, but parallel execution is the overridiationale
for the Gannet SoC architecture.

8.5 Forcing sequential evaluation

Although parallel evaluation is very efficient, it is sonme#is un-
desirable. Parallel execution also means that memory willtm-
cated for all parallel branches of computation, leadingptially

to very high memory consumption as discussed under Section 7
Another important consequence of parallel evaluation & &g.

the following code produces an unpredictable result, aettsea
race condition between thead andset! calls:

(let
(assign ’a (51 ...))
(set! ’a (S2 ...))
(read ’a)

)

Consequently, the capability to force sequential evatnds es-
sential. Therefore theet service allows serialisation of evaluation
through quoting. All quoted arguments will be evaluateduseq
tially (and obviously after the unquoted arguments). Thesabove
example becomes

(let
(assign ’a (51 ...))
(set! ’a (S2 ...))
’(read ’a)

)
As the update will be deferred until the assignment was sisece
ful, only the last argument needs to be quoted.
The quoted variant of the Gannet let syntax is also used to
support Scheme’set*:
; Scheme
(let ((x 0))
(let ((x B) (y x)) y) 5 =>0
(let* ((x 5) (y x)) y) ; =>5
)
; Gannet
(let (assign ’x 0)

’(let (assign ’x 5)
(assign ’y x) y)

’(let ’(assign ’x 5)
’(assign ’y x) ’y) ; => 5

=> 0

)
For the example given in 8.4, we can save memory by forcing
sequential evaluation:
(let
’(assign ’a
(let
’(assign ’a

(let ’(assign ’a (54 1 2))
>(assign ’b (S5 3 4)) (83 a b)))
’(assign ’b
(let ’(assign ’a (S7 5 6))
’(assign ’b (S8 7 8)) ’(S6 a b)))
’(52 a b)))
> (assign ’b
(let
’(assign ’a
(let ’(assign ’a (S11 9 10))
’(assign ’b (S12 11 12)) °(S10 a b)))
’(assign ’b
(let ’(assign ’a (514 13 14))
>(assign ’b (S15 15 16)) °(S13 a b)))
’(S9 a b)))

’(S1 a b))

By combining lexical scoping and sequential evaluatior th
memory consumption now grows linearly with the depth of the
expression rather than exponentially.

9. Status

The work on the compiler for the Gannet language has focused
on the back-end, i.e. compilation of Gannet syntax into tyina
packets. This is the only stage where non-trivial develagnie
required: the first stage of the compilation (transformirgpe&ne
to a subset) has been well-studied and there are plenty of Ope
Source implementations available; transforming the Sehsubset
into Gannet syntax is quite straightforward.

The back-end compiler is written in Haskell. It producesthos
platform-independent bytecode which can be executed oGany
net implementation. The current runtime for Gannet is emitin
Ruby (Thomas et al. 2004) and automatically translated te C+
with the option of using SystemC libraries. The main reasam f
the choice of Ruby is that it is a very clean language with kst
object support and Ruby objects map easily to hardware rasedul
On the other hand, by writing generic rather than idiomatib®
translation to STL-based C++ (Austern 1998) is very effitien

The purpose of the C++ version is to run as a Virtual Machine
on embedded systems. The Gannet VM makes it possible toimple
ment some of the services in software and others in hardwaate,
have a single task description program that governs thevimira
of such a combined software/hardware system.

SystemC (Ruf et al. 2001) is a system-level design and mod-
elling library for C++. It provides a framework to simulat®Gs
at high levels of abstraction. The SystemC version of Gaisrtee
closest approximation of the actual hardware SoC.

Although the Gannet architecture is aimed at very largeiegipbn-
specific Systems-on-Chip (e.g. for handheld applicatidosprac-
tical reasons, a proof-of-concept of the architecture isgpdevel-
oped on an FPGA board. Because FPGAs provide reprogrammable
hardware logic, they are ideally suited for development jaiado-
typing. The circuit design of the service manager is cutydrging
implemented, as are a set of core services. Because of cestn-
straints (the target board is the Xilinx University Progrsirtex-I|

2007/8/23

Pro board), the number of cores will be small (maximum 8). The Edwin S. Petrus. SKILL: a Lisp based extension languagéUv
main purpose of the FPGA implementation is to help estinfage t '93: Proceedings of the third international conference aspL
resource utilisation of the system. users and vendorpages 71-79, New York, NY, USA, 1993.

J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehld an
W. Mueller. The simulation semantics of systemc. DATE

10. Conclusion '01: Proceedings of the conference on Design, automatiah an
The Gannet project researches a naalvice-basedirchitecture test in Europepages 64-70, Piscataway, NJ, USA, 2001.

for very large reconfigurable Systems-on-Chip. The propase S. M. Scalera and J. R. Vazquez. The design and implementatio
chitecture results in a packet-based distributed procgssystem of a context switching FPGA. IRCCM '98: Proceedings of the
that is reconfigurable at task level. IEEE Symposium on FPGAs for Custom Computing Machines

: Lndthis patper :Ne proposfed ttt:]e ése oftSche_me ;s awhriﬁgh-level page 78, Washington, DC, USA, 1998.
ask description language for the Gannet service-basetbr8gs . . .
on-Chip architecture. We have explained how the service- 8@ C M. Sgr%, g' Sheets, A\'/M'hal’t l?l.' Ki%tger, S Mtah"k' J. tRab,aey
architecture can work as a coarse-grained distributedldatana- and 2. sangiovanni-vencentetil. ressing the Systeraon
chine. We have introduced the packet-based machine codeefor chip |nte’rconnect woes through communication-based deslg
Gannet architecture, the compilation process and the ceelue In DAC.Ol' Proceedings of the 38th conference on Design
tion process. automation pages 667—672, New York, NY, USA, 2001.

The paper has also explained the need for control constructsHans-Joachim Stolberg, Mladen Berekovic, Soren Moch, Lars

to improve the system’s performance and the main differemte Friebe, Mark Kulaczewski, Sebastian Flugel, Heiko Klusama
runtime behaviour for Scheme control constructys when ueec Andreas Dehnhardt, and Peter Pirsch. HiBRID-SoC: A Multi-
on a von Neumann-style microprocessor and on the Gannetsyst Core SoC Architecture for Multimedia Signal Processifide

In conclusion, we have demonstrated that Scheme is ideally Journal of VLSI Signal Processing1(1):9-20, August 2005.
suited as a high abstraction-level design language forleask

reconfigurable heterogeneous multi-core Systems-on-Chip Dave Thomas, Chad Fowier, and Andy HuRtogramming Ruby:

The Pragmatic Programmers’ Guide, Second Editi®ragmatic
Bookshelf, October 2004.

W. Vanderbauwhede. The Gannet Service-based SoC: A Service
Acknowledgments level Reconfigurable Architecture. IRroceedings of 1st

The author acknowledges the support of the UK Engineeriny an NASA/ESA Conference on Adaptive Hardware and Systems
Physical Science Research Council (EPSRC Advanced Résearc (AHS-2006)pages 255-261, Istanbul, Turkey, June 2006a.

Fellowship). W. Vanderbauwhede. Gannet: a functional task descripton |

guage for a service-based SoC architecturePrvc. 7th Sym-
posium on Trends in Functional Programming (TFP0&pril
References 2006b.
Matthew H. AusternGeneric programming and the STL.: using and
extending the C++ Standard Template LibraAddison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

L. Benini and G. De Micheli. Networks on Chips: A New SoC
Paradigm. IEEE Computer magazine35(1):70-78, January
2002.

W. J. Dally and B Towles. Route packets, not wires: On-chiprin
connection networks. IRroceedings of the Design Automation
Conferencepages 684—689, Las Vegas, NV, USA, June 2001.

Cristian Grecu and Michael Jones. Performance evaluatioh a
design trade-offs for network-on-chip interconnect aesttures.
IEEE Trans. Comput54(8):1025-1040, 2005.

Scott Hauck, Thomas W. Fry, Matthew M. Hosler, and Jeffrey P.
Kao. The Chimaera reconfigurable functional ulHEE Trans.
Very Large Scale Integr. Sysi2(2):206—217, 2004.

Chidamber Kulkarni, Gordon Brebner, and Graham Schellep-Ma
ping a domain specific language to a platform FPGA.DIRC
'04: Proceedings of the 41st annual conference on Design au-
tomation pages 924-927, New York, NY, USA, 2004.

Siew-Kei Lam, Bharathi N. Krishnan, and Thambipillai Srikiaan.
Efficient management of custom instructions for run-time re
configurable instruction set processors.Flald Programmable
Technology, 2006. FPT 2006. IEEE International Conference
on, pages 261-264, 2006.

Luciano Lavagno, Sujit Dey, and Rajesh Gupta. Specification
modeling and design tools for system-on-chipABP-DAC '02:
Proceedings of the 2002 conference on Asia South Pacifigrlesi
automation/VLSI Desigmpage 21, Washington, DC, USA, 2002.

9 2007/8/23

