
ARRAY LANGUAGES AND THE CHALLENGE OF MODERNCOMPUTER ARCHITECTUREPAUL COCKSHOTTThere has always been a 
lose relationship beween programming language designand 
omputer design. Ele
troni
 
omputers and programming lanugages are both'
omputers' in Turing's sense. They are systems whi
h allow the performan
e ofbounded universal 
omputation. Ea
h allows any 
omputable fun
tion to be evalu-ated, up to some memory limit. This equivalen
e has been understood sin
e the 30s'when Turing ma
hines(Turing 1937) were shown to be of the same 
omputationalpower as the λ
al
ulus.The initial relationship between languages and ma
hines was one of logi
al equiv-alen
e, but pra
ti
al distin
tion. The designers of the �rst generation 
omputerslike the Man
hester Mark 1(Lavington 1980), or Turing's ACE were 
on
erned withthe pra
ti
al task of getting a ma
hine to 
ompute for the �rst time.1. Sta
k ma
hinesDuring the 1950's the �rst programming languges COBOL, Fortran and ALGOL
ame to be developed. The existen
e of these languages a�e
ted the design ofthe se
ond and third generation 
omputers1. One minor e�e
t was to ensure thatde
imal arithmeti
 was supported in ma
hines like the 360(Emerson W. Pugh andPalmer 1991) in order to a

omodate the needs of COBOL 
ompilers. A moresigni�
ant in�uen
e was the invention of sta
k ma
hines by Burroughs(Lonerganand King 1985) in 1960. These were designed to support blo
k stru
tured languageslike ALGOL 60(Naur and Ba
kus 1960). The in�uen
e of the B5000 and ALGOLpersisted into the 1970s when the Intel 8086(Morse, Ravenel, Mazor and Pohlman1985) was released.The 8086 in
orporated a sta
k based pro
edure 
alling me
hanism designed to op-timise the implementation of blo
k stru
tured languages of the Algol family, thoughgiven the date at whi
h it was released, Pas
al rather than Algol would have beenthe intended language. Shortly afterwards Intel released the sta
k oriented �oatingpoint pro
essor 8087(Palmer and Morse 1984) that supported a reverse polish nota-tion for �oating point arithmeti
2. The availability of the 8087 
hip on the orginalIBM PC was a 
riti
al fa
tor in enabling IBM to laun
h an e�
ient APL interpreteron that ma
hine. The Pentium pro
essors in modern PCs retain the basi
 sta
koriented arithmeti
 unit of the 8086 and the Pas
al 
all me
hanisms of the 8086.1.1. APL ma
hines. During the 1970s attempts were made to dire
tly implementhigh level languages in hardware most famously with the SYMBOL(Smith, Ri
e,Cheskey, Laliotis and Lundstrum 1985) 
omputer whi
h in
orporated an interpreterand virtual storage manager for a heap based programming language dire
tly in thehardware. In addition mi
ro
oded APL ma
hines were proposed or implemented(Abrams 1970, Hassitt, Lageshulte and Lyon 1973, Hakami 1975). The most widelyused mi
ro
oded APL ma
hine was the IBM 5100 whi
h was a pre
ursor of the IBM1First generation 
omputers used valves, se
ond generation ones transistors, third generationones used integrated 
ir
uits, fourth generation used mi
ropro
essors, after whi
h people lost 
ount.2This was an extension of an earlier �oating point pro
essor for the 8080, originally laun
hedby AMD as the 9511 and li
ensed by Intel 1



Figure 1.1. The IBM 5100 mi
ro
oded APL mi
ro
omputer of 1975.

Figure 2.1. Basi
 Cray 1 ar
hite
ture showing ve
tor registers.PC. The aim of these ma
hines was to narrow the semanti
 gap between ma
hine
ode and the language used by appli
ations programmers. Improved performan
ewas a 
onsideration but not the primary one. The 5100 had only an 8 bit ALU andhad a performan
e 
omparable to other 8 bit mi
ros.2. Super 
omputersAnother strand of development at this stage was the invention of ve
tor andSIMD super-
omputers. These aimed, above all, at getting the highest possibleperforman
e. Ea
h represented a di�erent approa
h to over
omming the bottlene
kimposed on 
onventional 
omputers by their need to fet
h and update variables inmemory a word at a time.The ve
tor pro
essors pioneered by Cray(Russell 1985) based themselves on theprin
iple of pipelining ve
tor operations with the aim of delivering one �oatingpoint result every 
lo
k 
y
le. Instru
tions operated between ve
tor registers, ea
hof whi
h 
ould hold 64 �oating point values. Thus a ve
tor instru
tion likeV1=V2+V3would add the 
orresponding elements of ve
tors V2 and V3 storing the result inthe register V3. The use of pipelining enabled the results to be delivered one every10ns, whi
h was astonishingly fast at that time. With 
are it was possible to break2
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ARRAY
INCLUDING

Figure 2.2. The ICL DAP showing a bit pro
essor and 16th ofthe array of 4096 su
h pro
essorsup 
omplex Fortran expressions in su
h a way that the intermediate results of anexpression would be stored in ve
tor registers. Only the initial loading and storingof the V registers required a

ess to main memory, and this was done by whatamounted to fast DMA transfers. It was found that if memory a

esses took theform of streaming transfers, the e�e
tive bandwidth of the memory 
ould be mu
hfaster than for random a

ess transfers. A streaming transfer redu
ed the set-uptime needed to tansmit addresses and also allowed e�e
tive use of bank interleavingto redu
e memory laten
y.Compare to this the approa
h adopted by ICL, whose Distributed Array Pro-
essor (Reddaway 1973) or DAP. used 4096 small pro
essors operating in parallel.Ea
h pro
essor had a simple 1 bit arithmeti
 unit to whi
h a single 1 bit wide RAM
hip was proximally 
onne
ted. These pro
essing units were so arranged that onea
h 
lo
k 
y
le ea
h and every one of them performed the same logi
al or arith-meti
al operation. If you were to hold in your mind an image of a battalion of theGuards performing square drill, ea
h footsoldier moving in perfe
t syn
hrony to theregimental drum under the orders of the Sergeant Major, you would then have aperfe
t metaphor for the operation of the DAP. The DAP operated as an auxiliarypro
essor to a 
onventional 2980 mainframe with the the DAP memory array form-ing part of the general purpose memory of the 2980. The fa
t that ea
h pro
essor
ould operate on but one bit, was 
ir
umvented by their performan
e of bit serialarithmeti
. Alternatively the pro
essors 
ould be grouped in blo
ks of 8,16, 32 or64 to perform wider arithmeti
. Thus in the widest mode the DAP 
ould operateon 64 x 64bit numbers ea
h step. The ability to tailor the word length to the appli-
ation was parti
ularly useful in graphi
s where one operated on arrays of bits or3



bytes. The DAP ar
hite
ture and that of Hillis's(Hillis 1986) derivative Conne
tionMa
hine was refered to as SIMD - Single Instru
tion Multiple Datastream.Experien
e with programming these 
lasses of super-
omputer led to the devel-opment of new Fortran 
ompilers (Perrott and Zarea-Aliabadi 1986). The CrayFortran 
ompiler took programs that were synta
ti
ally identi
al to standard For-tran and attempted to dete
t loops that 
ould be ve
torised. The DAP Fortranon the other hand allowed array parallel operations in APL style so that one 
ouldwrite: V()+5 add 5 to the 64 elements of VM.GT.0 generate a 4096 bit truth matrixV(VI) VI is an integer ve
tor that indexes VV(B) B is a boolean mask that sele
ts V(I) where B(I) is trueIV(,5,6)/V 64 element ve
tor IV is divided element by element by VThis sort of notation was later in
orporated into standard Fortran90, High Perfor-man
e Fortran(Ewing, Ri
hardson, Simpson and Kulkarni 1998) and the Fortran90subset F(Met
alf and Reid 1996).3. Mi
ropro
essor based ar
hite
turesThe next generation of super-
omputers tended to be shared memory multi-pro
essors initially from makers like Cray but later from other manufa
turers likeSun or IBM. The move to su
h ma
hines was an e�e
t of the produ
tion of highperforman
e mi
ropro
essors. Large spe
ialised ve
tor ma
hines of the earlier gen-eration met limits in their performan
e in terms of 
lo
king that 
ould be bye-passed in an e
onomi
al way through the use of repli
ated standard mi
ropro-
essors. These in turn sparked o� another round of array language developmentwith languages like ZPL (Snyder 1999), Nesl (Blello
h 1995) and SAC(Grel
k andS
holz 2003, S
holz 2003) borrowing APL 
on
epts but being targeted at sharedmemory multi-pro
essors. The aim in these languages was to split array operationsover a group of pro
essors, with all of the pro
essors sharing the memory spa
ewithin whi
h the arrays were stored.By the late 1980's mi
ropro
essors had rea
hed an ar
hite
tural 
omplexity equiv-alent to the mainframe 
omputers of an earlier generation. Fa
ed with the problemof how to use an exponentially growing number of transistors, their designers startedto 
opy te
hniquies already pioneered in high perfroman
e mainframes. Initially thisinvolved the introdu
tion of super-s
alar exe
ution, but from the late 90s, SIMDand Ve
tor pro
essing features started to be in
orporated. The Intel MMX ar
hi-te
ture in
orporated a modest sized SIMD 
o-pro
essor on the die. With the P4this was enlarged giving the ar
hite
ture shown in Figure 3.1. There is a SIMDunit 
apable of operating on 16 byte wide operands. Alternatively, as with earlierSIMD designs, the byte pro
essors 
an be ganged to form 8 × 16-bit pro
essors,
4×32-bit pro
essors or 2×64-bit pro
essors. When ganged in 32-bit or 64-bit form,the SIMD pro
essors 
an perform �oating point as well as integer arithmeti
. Whenoperating with bytes they 
an perform saturated arithmeti
 whi
h involves 
lippingthe results on over�ow to 255 or to 0 on under�ow. This feature is parti
ularlyuseful in image pro
essing.The signi�
an
e of this development should be emphasised. What had on
e beenan esoteri
 form of 
omputer ar
hite
ture, restri
ted to a few experimental super-
omputer sites was now the standard type of mass-produ
ed PC. When operatingon byte wide quantities, the P4 or Athlon ar
hite
tures 
an speed their performan
eup by a fa
tor of 10 or more by using the SIMD unit rather than the s
alar pro
essor.Using other bit widths the performan
e gains are appre
iable but not as dramati
.Software support for SIMD on PCs was initially poor. Intels earlier C 
ompilersallowed ma
ro operations to operate on short ve
tor types that 
orresponded tothose supported dire
tly in hardware. Later Intel released a Fortran 
ompiler (Bik,4
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Figure 3.1. Outline of the Intel P4 ar
hite
ture showing the in-
orporated Streamming SIMD unit.Girkar, Grey and Tian 2002) that in
orporated te
hniques earlier developed for CrayFortran 
ompilers to allow automati
 SIMD ve
torisation of loops in unmodi�edFortran 
ode. C 
ompilers with similar features have been released by Intel andCodeplay. From the viewpoint of the Array Programming Language 
ommunitysu
h approa
hes fail to take full advantage of array ar
hite
tures. The C and Fortranprograms are still written with a sequential, operation at a time, mindset whi
h 
anmake it hard for programmers to think in parallel terms. If they have not 
asttheir algorithm in parallel form to start out with, they may be unable to 
arryout the high level algorithmi
 transformations ne
essary to take full advantage ofarray ar
hite
tures. It was for this reason that the Fortran 
ommunity in
orporatedAPL 
on
epts in the late 80s. Ve
tor Pas
al (Co
kshott 2004, Co
kshott 2002) is aPas
al extension analogous to High Performan
e Fortran that has been targeted atSIMD PCs. However, like HPF, it requires the programmer to expli
ityly allo
ateand de
lare arrays whi
h is markedly less �exible than what o

urs in APL.4. Future ma
hinesThe SIMD unit ofthe P4 is targeted at graphi
s appli
ations. The byte widearithmeti
 is of obvious value in image manipulation. The ability to operate on 4element ve
tors of �oating point numbers is of parti
ular use in 3D graphi
s whereone performs viewpoint proje
tion by multiplying 4 element ve
tors in homogenous
o-ordinates by 4×4 rotation, translation and s
ale matri
es. A 
omputer game mayrequire tens of thousands of verti
es to be transformed in this way for every videoframe - at say 25Hz. The demands for more realisti
 games has led 
hip designers5



Figure 4.1. The ar
hite
ture of the PS/2 pro
essor. The EE 
orein
orporates a SIMD unit analgous to that shown in Figure 3.1.to raise the level of parallelism even further. The pioneer in this was Sony whoseEmotion Engine, in
orporated in the ¿100 Play Station 2 (PS2) in
luded:(1) A MIPS 64 bit 
ore a
ting as the 
ontrol pro
essor.(2) An integer SIMD unit analogous to that on the P4.(3) A pair of Ve
tor Pro
essing Units (VPU), ea
h of whi
h 
ould perform4×32-bit �oating point operations ea
h 
lo
k 
y
le.The PS/2 di�ered from the ma
hines dis
ussed earlier by in
orporating bothSIMD and distributed memory multi-pro
essing. The VPUs 
an operate as inde-pendent pro
essors fet
hing their own instru
tions. They have ve
tor �oating pointregisters and also s
alar registers for address manipulation. Instead of 
a
he, theyea
h have a modest sized private high speed memory on 
hip. Annoyingly they areasymetri
al in this with one haveing 16K and the other 64K of memory. Ve
tor pro-
essing programs and data reside in this memory. DMA 
hannels allow the MIPS
ore pro
essor to transfer data to and from the private VPU memory and to initiatejobs on the VPUs.The Cell pro
essor jointly developed by IBM and Sony for use in the PS/3 amongother appli
ations extends the model of the PS/2 by having 7 ve
tor units ea
h with256K of memory on 
hip. These promise to be able to perform of the order of 50Giga�ops provided that the VPUs 
an be kept busy. Similar ar
hite
tures are beingdeveloped in other proje
ts(Paulson 2005).At the 
rux of making super
omputer- on-a-
hip systems e�e
-tive ... will be the programming ne
essary to get the most outof the 
ir
uitry and ar
hite
ture. However .... there are few pro-gramming tools and no programming languages optimized for thispurpose.(Paulson 2005)By dint of great ingenuity it has been possible for ve
torising 
ompilers for s
alarlanguages to dete
t a 
ertain amount of parallelism. The new generation of pro
es-sors raise the bar enormously. Not only must parallelism be dete
ted, but data mustbe distributed among a heterogenous 
olle
tion of pro
essors with private memoriesand di�ering instru
tinsets.It seems plausible that only array languages whi
h allow programmers to spe
-ify bulk operations in a data-parallel style, and whi
h have full 
ontrol over theallo
ation and pla
ement of store will be able to meet these pro
essing needs.6



It is a moot point whether this implies 
ompiled languages like SAC or inter-pretive languages like APL or J. Given the number of VPU's available to do thebulk 
al
ulations, it is plausible that an interpreter running on the 
ontrol pro
es-sor 
ould dispat
h jobs to the VPUs at a su�
ient rate to keep them busy on largeproblems. In either 
ase, array languages o�er one of the most promising avenuesfor the massive parallelism o�ered by the new parallel ve
tor ma
hines. But imple-menting e�
ient array language implementations on these ma
hines will demandsome of the most sophisti
ated 
ompilers and interpreters so far developed.Referen
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