ARRAY LANGUAGES AND THE CHALLENGE OF MODERN
COMPUTER ARCHITECTURE

PAUL COCKSHOTT

There has always been a close relationship beween programming language design
and computer design. Electronic computers and programming lanugages are both
‘computers’ in Turing’s sense. They are systems which allow the performance of
bounded universal computation. Each allows any computable function to be evalu-
ated, up to some memory limit. This equivalence has been understood since the 30s’
when Turing machines(Turing 1937) were shown to be of the same computational
power as the Acalculus.

The initial relationship between languages and machines was one of logical equiv-
alence, but practical distinction. The designers of the first generation computers
like the Manchester Mark 1(Lavington 1980), or Turing’s ACE were concerned with
the practical task of getting a machine to compute for the first time.

1. STACK MACHINES

During the 1950’s the first programming languges COBOL, Fortran and ALGOL
came to be developed. The existence of these languages affected the design of
the second and third generation computers'. One minor effect was to ensure that
decimal arithmetic was supported in machines like the 360(Emerson W. Pugh and
Palmer 1991) in order to accomodate the needs of COBOL compilers. A more
significant influence was the invention of stack machines by Burroughs(Lonergan
and King 1985) in 1960. These were designed to support block structured languages
like ALGOL 60(Naur and Backus 1960). The influence of the B5000 and ALGOL
persisted into the 1970s when the Intel 8086(Morse, Ravenel, Mazor and Pohlman
1985) was released.

The 8086 incorporated a stack based procedure calling mechanism designed to op-
timise the implementation of block structured languages of the Algol family, though
given the date at which it was released, Pascal rather than Algol would have been
the intended language. Shortly afterwards Intel released the stack oriented floating
point processor 8087(Palmer and Morse 1984) that supported a reverse polish nota-
tion for floating point arithmetic?. The availability of the 8087 chip on the orginal
IBM PC was a critical factor in enabling IBM to launch an efficient, APL interpreter
on that machine. The Pentium processors in modern PCs retain the basic stack
oriented arithmetic unit of the 8086 and the Pascal call mechanisms of the 8086.

1.1. APL machines. During the 1970s attempts were made to directly implement
high level languages in hardware most famously with the SYMBOL(Smith, Rice,
Cheskey, Laliotis and Lundstrum 1985) computer which incorporated an interpreter
and virtual storage manager for a heap based programming language directly in the
hardware. In addition microcoded APL machines were proposed or implemented
(Abrams 1970, Hassitt, Lageshulte and Lyon 1973, Hakami 1975). The most widely
used microcoded APL machine was the IBM 5100 which was a precursor of the IBM

IFirst generation computers used valves, second generation ones transistors, third generation
ones used integrated circuits, fourth generation used microprocessors, after which people lost count.
2This was an extension of an earlier floating point processor for the 8080, originally launched
by AMD as the 9511 and licensed by Intel
1

F1GURE 1.1. The IBM 5100 microcoded APL microcomputer of 1975.

== Vector Integer Add (%)

Vector Logical &

Vector =] Vector Shift (4

Registers

-e—l Floating-Point Add {8)
=
'e-l FP Reciprocal Apx (14)

Main Memory

" Integer Add (3

=me| Scalar Logical (1)

=] 3 calar Shift 2]

=ne| Population Cnt. (3)

=] Address Add (2)

Address Mult, ()

FI1GURE 2.1. Basic Cray 1 architecture showing vector registers.

PC. The aim of these machines was to narrow the semantic gap between machine
code and the language used by applications programmers. Improved performance
was a consideration but not the primary one. The 5100 had only an 8 bit ALU and
had a performance comparable to other 8 bit micros.

2. SUPER COMPUTERS

Another strand of development at this stage was the invention of vector and
SIMD super-computers. These aimed, above all, at getting the highest possible
performance. Each represented a different approach to overcomming the bottleneck
imposed on conventional computers by their need to fetch and update variables in
memory a word at a time.

The vector processors pioneered by Cray(Russell 1985) based themselves on the
principle of pipelining vector operations with the aim of delivering one floating
point result every clock cycle. Instructions operated between vector registers, each
of which could hold 64 floating point values. Thus a vector instruction like

V1=V2+4V3

would add the corresponding elements of vectors V2 and V3 storing the result in
the register V3. The use of pipelining enabled the results to be delivered one every
10ns, which was astonishingly fast at that time. With care it was possible to break

2

bit prf)ciﬁaar _ E

@EEE@EEEEEE EEERY
EREEREER ERERRRER
/ﬁﬂﬁﬁﬁ EEEEEREERFRERR
//‘Eﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
FEEFEFRERERERERER
FEEFEBEE ERERERER

/ FEEERRER EEREERER

ICL 2980 EEEEEEEE EEEEEEEE
A REEREREIRERERIRER

| l S EEEREEEE EEREIREE
7 PERERREEREREREREEE
MEMORY [\~~~ Eﬁﬁ ffﬂﬁﬁﬁ ﬁ@ﬁﬁﬁﬁ@ﬁ
PAPARRATS I EEE E ﬁﬁﬁﬂﬂ”ﬁﬂﬁ
 EEREREREREEERERE
\Eﬂﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬂ

F1GURE 2.2. The ICL DAP showing a bit processor and 16th of
the array of 4096 such processors

SID

up complex Fortran expressions in such a way that the intermediate results of an
expression would be stored in vector registers. Only the initial loading and storing
of the V registers required access to main memory, and this was done by what
amounted to fast DMA transfers. It was found that if memory accesses took the
form of streaming transfers, the effective bandwidth of the memory could be much
faster than for random access transfers. A streaming transfer reduced the set-up
time needed to tansmit addresses and also allowed effective use of bank interleaving
to reduce memory latency.

Compare to this the approach adopted by ICL, whose Distributed Array Pro-
cessor (Reddaway 1973) or DAP. used 4096 small processors operating in parallel.
Each processor had a simple 1 bit arithmetic unit to which a single 1 bit wide RAM
chip was proximally connected. These processing units were so arranged that on
each clock cycle each and every one of them performed the same logical or arith-
metical operation. If you were to hold in your mind an image of a battalion of the
Guards performing square drill, each footsoldier moving in perfect synchrony to the
regimental drum under the orders of the Sergeant Major, you would then have a
perfect metaphor for the operation of the DAP. The DAP operated as an auxiliary
processor to a conventional 2980 mainframe with the the DAP memory array form-
ing part of the general purpose memory of the 2980. The fact that each processor
could operate on but one bit, was circumvented by their performance of bit serial
arithmetic. Alternatively the processors could be grouped in blocks of 8,16, 32 or
64 to perform wider arithmetic. Thus in the widest mode the DAP could operate
on 64 x 64bit numbers each step. The ability to tailor the word length to the appli-
cation was particularly useful in graphics where one operated on arrays of bits or

3

bytes. The DAP architecture and that of Hillis’s(Hillis 1986) derivative Connection
Machine was refered to as SIMD - Single Instruction Multiple Datastream.

Experience with programming these classes of super-computer led to the devel-
opment of new Fortran compilers (Perrott and Zarea-Aliabadi 1986). The Cray
Fortran compiler took programs that were syntactically identical to standard For-
tran and attempted to detect loops that could be vectorised. The DAP Fortran
on the other hand allowed array parallel operations in APL style so that one could
write:

V()+5 add 5 to the 64 elements of V
M.GT.O generate a 4096 bit truth matrix
V(VI) VI is an integer vector that indexes V
V(B) B is a boolean mask that selects V(I) where B(I) is true

IV(,5,6)/V 64 element vector IV is divided element by element by V
This sort of notation was later incorporated into standard Fortran90, High Perfor-
mance Fortran(Ewing, Richardson, Simpson and Kulkarni 1998) and the Fortran90
subset F(Metcalf and Reid 1996).

3. MICROPROCESSOR BASED ARCHITECTURES

The next generation of super-computers tended to be shared memory multi-
processors initially from makers like Cray but later from other manufacturers like
Sun or IBM. The move to such machines was an effect of the production of high
performance microprocessors. Large specialised vector machines of the earlier gen-
eration met limits in their performance in terms of clocking that could be bye-
passed in an economical way through the use of replicated standard micropro-
cessors. These in turn sparked off another round of array language development
with languages like ZPL (Snyder 1999), Nesl (Blelloch 1995) and SAC(Grelck and
Scholz 2003, Scholz 2003) borrowing APL concepts but being targeted at shared
memory multi-processors. The aim in these languages was to split array operations
over a group of processors, with all of the processors sharing the memory space
within which the arrays were stored.

By the late 1980’s microprocessors had reached an architectural complexity equiv-
alent to the mainframe computers of an earlier generation. Faced with the problem
of how to use an exponentially growing number of transistors, their designers started
to copy techniquies already pioneered in high perfromance mainframes. Initially this
involved the introduction of super-scalar execution, but from the late 90s, SIMD
and Vector processing features started to be incorporated. The Intel MMX archi-
tecture incorporated a modest sized SIMD co-processor on the die. With the P4
this was enlarged giving the architecture shown in Figure 3.1. There is a SIMD
unit capable of operating on 16 byte wide operands. Alternatively, as with earlier
SIMD designs, the byte processors can be ganged to form 8 X 16-bit processors,
4 x 32-bit processors or 2 x 64-bit processors. When ganged in 32-bit or 64-bit form,
the SIMD processors can perform floating point as well as integer arithmetic. When
operating with bytes they can perform saturated arithmetic which involves clipping
the results on overflow to 255 or to 0 on underflow. This feature is particularly
useful in image processing.

The significance of this development should be emphasised. What had once been
an esoteric form of computer architecture, restricted to a few experimental super-
computer sites was now the standard type of mass-produced PC. When operating
on byte wide quantities, the P4 or Athlon architectures can speed their performance
up by a factor of 10 or more by using the SIMD unit rather than the scalar processor.
Using other bit widths the performance gains are appreciable but not as dramatic.

Software support for SIMD on PCs was initially poor. Intels earlier C compilers
allowed macro operations to operate on short vector types that corresponded to
those supported directly in hardware. Later Intel released a Fortran compiler (Bik,

4

A single 8 bit processor unit

E
&
1]

Lo SSE attached processor

broadcast SIMD instructions

control
unit

on chip
cache

B
f

Ty

external
main

memory
datg

32 bit scalar integer core, dual issue

32 bit registers

scalar floating point unit

ﬁ
FPU Stack N

stack pointer

F1GURE 3.1. Outline of the Intel P4 architecture showing the in-
corporated Streamming SIMD unit.

Girkar, Grey and Tian 2002) that incorporated techniques earlier developed for Cray
Fortran compilers to allow automatic SIMD vectorisation of loops in unmodified
Fortran code. C compilers with similar features have been released by Intel and
Codeplay. From the viewpoint of the Array Programming Language community
such approaches fail to take full advantage of array architectures. The C and Fortran
programs are still written with a sequential, operation at a time, mindset which can
make it hard for programmers to think in parallel terms. If they have not cast
their algorithm in parallel form to start out with, they may be unable to carry
out the high level algorithmic transformations necessary to take full advantage of
array architectures. It was for this reason that the Fortran community incorporated
APL concepts in the late 80s. Vector Pascal (Cockshott 2004, Cockshott 2002) is a
Pascal extension analogous to High Performance Fortran that has been targeted at
SIMD PCs. However, like HPF, it requires the programmer to explicityly allocate
and declare arrays which is markedly less flexible than what occurs in APL.

4. FUTURE MACHINES

The SIMD unit ofthe P4 is targeted at graphics applications. The byte wide
arithmetic is of obvious value in image manipulation. The ability to operate on 4
element vectors of floating point numbers is of particular use in 3D graphics where
one performs viewpoint projection by multiplying 4 element vectors in homogenous
co-ordinates by 4 x4 rotation, translation and scale matrices. A computer game may
require tens of thousands of vertices to be transformed in this way for every video
frame - at say 25Hz. The demands for more realistic games has led chip designers

5

VEUO VEUL

| I | , e] .
= e —
' =

= aIF
Core 128 A5 128 J 2
VI Ment W Heml 1;; -:
] [)
| VIFD | | VIF1
x ¥
| | PR | I
>
I 120
Maln Memory

FIGURE 4.1. The architecture of the PS/2 processor. The EE core
incorporates a SIMD unit analgous to that shown in Figure 3.1.

to raise the level of parallelism even further. The pioneer in this was Sony whose
Emotion Engine, incorporated in the £100 Play Station 2 (PS2) included:

(1) A MIPS 64 bit core acting as the control processor.

(2) An integer SIMD unit analogous to that on the P4.

(3) A pair of Vector Processing Units (VPU), each of which could perform
4x 32-bit floating point operations each clock cycle.

The PS/2 differed from the machines discussed earlier by incorporating both
SIMD and distributed memory multi-processing. The VPUs can operate as inde-
pendent processors fetching their own instructions. They have vector floating point
registers and also scalar registers for address manipulation. Instead of cache, they
each have a modest sized private high speed memory on chip. Annoyingly they are
asymetrical in this with one haveing 16K and the other 64K of memory. Vector pro-
cessing programs and data reside in this memory. DMA channels allow the MIPS
core processor to transfer data to and from the private VPU memory and to initiate
jobs on the VPUs.

The Cell processor jointly developed by IBM and Sony for use in the PS/3 among
other applications extends the model of the PS/2 by having 7 vector units each with
256K of memory on chip. These promise to be able to perform of the order of 50
Gigaflops provided that the VPUs can be kept busy. Similar architectures are being
developed in other projects(Paulson 2005).

At the crux of making supercomputer- on-a-chip systems effec-
tive ... will be the programming necessary to get the most out
of the circuitry and architecture. However there are few pro-
gramming tools and no programming languages optimized for this
purpose.(Paulson 2005)

By dint of great ingenuity it has been possible for vectorising compilers for scalar
languages to detect a certain amount of parallelism. The new generation of proces-
sors raise the bar enormously. Not only must parallelism be detected, but data must
be distributed among a heterogenous collection of processors with private memories
and differing instructinsets.

It seems plausible that only array languages which allow programmers to spec-
ify bulk operations in a data-parallel style, and which have full control over the
allocation and placement of store will be able to meet these processing needs.

6

It is a moot point whether this implies compiled languages like SAC or inter-
pretive languages like APL or J. Given the number of VPU’s available to do the
bulk calculations, it is plausible that an interpreter running on the control proces-
sor could dispatch jobs to the VPUs at a sufficient rate to keep them busy on large
problems. In either case, array languages offer one of the most promising avenues
for the massive parallelism offered by the new parallel vector machines. But imple-
menting efficient array language implementations on these machines will demand
some of the most sophisticated compilers and interpreters so far developed.

REFERENCES

Abrams, P.: 1970, An APL Machine, Stanford Linear Accelerator Center, Stanford University,
Stanford.

Bik, A. J. C., Girkar, M., Grey, P. M. and Tian, X.: 2002, Automatic intra-register vectorization
for the intel architecture, Int. J. Parallel Program. 30(2), 65-98.

Blelloch, G.: 1995, Nesl: A nested data-parallel language, Vol. CMU-CS-95-170, Carnegie Mellon
University.

Cockshott, P.: 2002, Vector pascal reference manual, SIGPLAN Not. 37(6), 59 81.

Cockshott, P.: 2004, Efficient compilation of array expressions, SIGAPL APL Quote Quad
34(2), 16 25.

Emerson W. Pugh, .. R. J. and Palmer, J. H.: 1991, IBM’s 360 and Farly 370 Systems, MIT.

Ewing, A., Richardson, H., Simpson, A. and Kulkarni, R.: 1998, Writing Data Parallel Programs
with High Performance Fortran, Edinburgh ParallelComputing Centre.

Grelck, C. and Scholz, S.-B.: 2003, SAC — From High-level Programming with Arrays to Efficient
Parallel Execution, Parallel Processing Letters 13(3), 401 412.

Hakami, B.: 1975, Efficient Implementation of APL in a Multilanguage Environment, Interna-
tional Computers Ltd.

Hassitt, A., Lageshulte, J. and Lyon, L.: 1973, Implementation of a high level language machine,
Communications of the ACM 16.

Hillis, W. D.: 1986, The connection machine, MIT Press, Cambridge, MA, USA.

Lavington, S.: 1980, Early British Computers, Manchester University Press, Manchester.

Lonergan, W. and King, P.: 1985, Design of the b5000 system, in D. Sieworek, G. Bell and
A. Newell (eds), Computer Structures, McGraw Hill.

Metcalf, M. and Reid, J.: 1996, The F Programming Language, Oxford Univesity Press.

Morse, S., Ravenel, B., Mazor, S. and Pohlman, W.: 1985, Intel microprocessors: 8008 to 8086, in
D. Sieworek, G. Bell and A. Newell (eds), Computer Structures, McGraw Hill.

Naur, P. and Backus, J.: 1960, Report on the algorithmic language algol 60, Danish Academy of
Technical Sciences, Copenhagen.

Palmer, J. and Morse, S.: 1984, The 8087 primer, Wiley, New York.

Paulson, T.. D.: 2005, Squeezing supercomputers onto a chip, Computer 38(1), 21-23.

Perrott, R. H. and Zarea-Aliabadi, A.: 1986, Supercomputer languages, ACM Comput. Surv.
18(1), 5-22.

Reddaway, S. F.: 1973, Dap a distributed array processor, SIGARCH Comput. Archit. News
2(4), 61-65.

Russell, R.: 1985, The cray-1 computer system, in D. Sieworek, G. Bell and A. Newell (eds),
Computer Structures, McGraw Hill.

Scholz, S.-B.: 2003, Single Assignment C Efficient Support for High-Level Array Operations in
a Functional Setting, Journal of Functional Programming 13(6), 1005-1059.

Smith, W., Rice, R., Cheskey, G., Laliotis, T. and Lundstrum, S.: 1985, The symbol computer, in
D. Sieworek, G. Bell and A. Newell (eds), Computer Structures, McGraw Hill.

Snyder, L.: 1999, A Programmer’s Guide to ZPL, MIT Press, Cambridge, Mass.

Turing, A.: 1937, On computable numbers, with an application to the entscheidungsproblem,
Proceedings of the London Mathematical Society 42, 230 65.

DepT CoMPUTING SCIENCE UNIVERSITY OF (GLASGOW
E-mail address: wpc@dcs.gla.ac.uk

