
ARRAY LANGUAGES AND THE CHALLENGE OF MODERNCOMPUTER ARCHITECTUREPAUL COCKSHOTTThere has always been a lose relationship beween programming language designand omputer design. Eletroni omputers and programming lanugages are both'omputers' in Turing's sense. They are systems whih allow the performane ofbounded universal omputation. Eah allows any omputable funtion to be evalu-ated, up to some memory limit. This equivalene has been understood sine the 30s'when Turing mahines(Turing 1937) were shown to be of the same omputationalpower as the λalulus.The initial relationship between languages and mahines was one of logial equiv-alene, but pratial distintion. The designers of the �rst generation omputerslike the Manhester Mark 1(Lavington 1980), or Turing's ACE were onerned withthe pratial task of getting a mahine to ompute for the �rst time.1. Stak mahinesDuring the 1950's the �rst programming languges COBOL, Fortran and ALGOLame to be developed. The existene of these languages a�eted the design ofthe seond and third generation omputers1. One minor e�et was to ensure thatdeimal arithmeti was supported in mahines like the 360(Emerson W. Pugh andPalmer 1991) in order to aomodate the needs of COBOL ompilers. A moresigni�ant in�uene was the invention of stak mahines by Burroughs(Lonerganand King 1985) in 1960. These were designed to support blok strutured languageslike ALGOL 60(Naur and Bakus 1960). The in�uene of the B5000 and ALGOLpersisted into the 1970s when the Intel 8086(Morse, Ravenel, Mazor and Pohlman1985) was released.The 8086 inorporated a stak based proedure alling mehanism designed to op-timise the implementation of blok strutured languages of the Algol family, thoughgiven the date at whih it was released, Pasal rather than Algol would have beenthe intended language. Shortly afterwards Intel released the stak oriented �oatingpoint proessor 8087(Palmer and Morse 1984) that supported a reverse polish nota-tion for �oating point arithmeti2. The availability of the 8087 hip on the orginalIBM PC was a ritial fator in enabling IBM to launh an e�ient APL interpreteron that mahine. The Pentium proessors in modern PCs retain the basi stakoriented arithmeti unit of the 8086 and the Pasal all mehanisms of the 8086.1.1. APL mahines. During the 1970s attempts were made to diretly implementhigh level languages in hardware most famously with the SYMBOL(Smith, Rie,Cheskey, Laliotis and Lundstrum 1985) omputer whih inorporated an interpreterand virtual storage manager for a heap based programming language diretly in thehardware. In addition mirooded APL mahines were proposed or implemented(Abrams 1970, Hassitt, Lageshulte and Lyon 1973, Hakami 1975). The most widelyused mirooded APL mahine was the IBM 5100 whih was a preursor of the IBM1First generation omputers used valves, seond generation ones transistors, third generationones used integrated iruits, fourth generation used miroproessors, after whih people lost ount.2This was an extension of an earlier �oating point proessor for the 8080, originally launhedby AMD as the 9511 and liensed by Intel 1



Figure 1.1. The IBM 5100 mirooded APL miroomputer of 1975.

Figure 2.1. Basi Cray 1 arhiteture showing vetor registers.PC. The aim of these mahines was to narrow the semanti gap between mahineode and the language used by appliations programmers. Improved performanewas a onsideration but not the primary one. The 5100 had only an 8 bit ALU andhad a performane omparable to other 8 bit miros.2. Super omputersAnother strand of development at this stage was the invention of vetor andSIMD super-omputers. These aimed, above all, at getting the highest possibleperformane. Eah represented a di�erent approah to overomming the bottlenekimposed on onventional omputers by their need to feth and update variables inmemory a word at a time.The vetor proessors pioneered by Cray(Russell 1985) based themselves on thepriniple of pipelining vetor operations with the aim of delivering one �oatingpoint result every lok yle. Instrutions operated between vetor registers, eahof whih ould hold 64 �oating point values. Thus a vetor instrution likeV1=V2+V3would add the orresponding elements of vetors V2 and V3 storing the result inthe register V3. The use of pipelining enabled the results to be delivered one every10ns, whih was astonishingly fast at that time. With are it was possible to break2



DAP ARRAYS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

bit processor

ram

N

S

EW

D

IBUS

ICL 2980

MEMORY
ARRAY
INCLUDING

Figure 2.2. The ICL DAP showing a bit proessor and 16th ofthe array of 4096 suh proessorsup omplex Fortran expressions in suh a way that the intermediate results of anexpression would be stored in vetor registers. Only the initial loading and storingof the V registers required aess to main memory, and this was done by whatamounted to fast DMA transfers. It was found that if memory aesses took theform of streaming transfers, the e�etive bandwidth of the memory ould be muhfaster than for random aess transfers. A streaming transfer redued the set-uptime needed to tansmit addresses and also allowed e�etive use of bank interleavingto redue memory lateny.Compare to this the approah adopted by ICL, whose Distributed Array Pro-essor (Reddaway 1973) or DAP. used 4096 small proessors operating in parallel.Eah proessor had a simple 1 bit arithmeti unit to whih a single 1 bit wide RAMhip was proximally onneted. These proessing units were so arranged that oneah lok yle eah and every one of them performed the same logial or arith-metial operation. If you were to hold in your mind an image of a battalion of theGuards performing square drill, eah footsoldier moving in perfet synhrony to theregimental drum under the orders of the Sergeant Major, you would then have aperfet metaphor for the operation of the DAP. The DAP operated as an auxiliaryproessor to a onventional 2980 mainframe with the the DAP memory array form-ing part of the general purpose memory of the 2980. The fat that eah proessorould operate on but one bit, was irumvented by their performane of bit serialarithmeti. Alternatively the proessors ould be grouped in bloks of 8,16, 32 or64 to perform wider arithmeti. Thus in the widest mode the DAP ould operateon 64 x 64bit numbers eah step. The ability to tailor the word length to the appli-ation was partiularly useful in graphis where one operated on arrays of bits or3



bytes. The DAP arhiteture and that of Hillis's(Hillis 1986) derivative ConnetionMahine was refered to as SIMD - Single Instrution Multiple Datastream.Experiene with programming these lasses of super-omputer led to the devel-opment of new Fortran ompilers (Perrott and Zarea-Aliabadi 1986). The CrayFortran ompiler took programs that were syntatially idential to standard For-tran and attempted to detet loops that ould be vetorised. The DAP Fortranon the other hand allowed array parallel operations in APL style so that one ouldwrite: V()+5 add 5 to the 64 elements of VM.GT.0 generate a 4096 bit truth matrixV(VI) VI is an integer vetor that indexes VV(B) B is a boolean mask that selets V(I) where B(I) is trueIV(,5,6)/V 64 element vetor IV is divided element by element by VThis sort of notation was later inorporated into standard Fortran90, High Perfor-mane Fortran(Ewing, Rihardson, Simpson and Kulkarni 1998) and the Fortran90subset F(Metalf and Reid 1996).3. Miroproessor based arhiteturesThe next generation of super-omputers tended to be shared memory multi-proessors initially from makers like Cray but later from other manufaturers likeSun or IBM. The move to suh mahines was an e�et of the prodution of highperformane miroproessors. Large speialised vetor mahines of the earlier gen-eration met limits in their performane in terms of loking that ould be bye-passed in an eonomial way through the use of repliated standard miropro-essors. These in turn sparked o� another round of array language developmentwith languages like ZPL (Snyder 1999), Nesl (Blelloh 1995) and SAC(Grelk andSholz 2003, Sholz 2003) borrowing APL onepts but being targeted at sharedmemory multi-proessors. The aim in these languages was to split array operationsover a group of proessors, with all of the proessors sharing the memory spaewithin whih the arrays were stored.By the late 1980's miroproessors had reahed an arhitetural omplexity equiv-alent to the mainframe omputers of an earlier generation. Faed with the problemof how to use an exponentially growing number of transistors, their designers startedto opy tehniquies already pioneered in high perfromane mainframes. Initially thisinvolved the introdution of super-salar exeution, but from the late 90s, SIMDand Vetor proessing features started to be inorporated. The Intel MMX arhi-teture inorporated a modest sized SIMD o-proessor on the die. With the P4this was enlarged giving the arhiteture shown in Figure 3.1. There is a SIMDunit apable of operating on 16 byte wide operands. Alternatively, as with earlierSIMD designs, the byte proessors an be ganged to form 8 × 16-bit proessors,
4×32-bit proessors or 2×64-bit proessors. When ganged in 32-bit or 64-bit form,the SIMD proessors an perform �oating point as well as integer arithmeti. Whenoperating with bytes they an perform saturated arithmeti whih involves lippingthe results on over�ow to 255 or to 0 on under�ow. This feature is partiularlyuseful in image proessing.The signi�ane of this development should be emphasised. What had one beenan esoteri form of omputer arhiteture, restrited to a few experimental super-omputer sites was now the standard type of mass-produed PC. When operatingon byte wide quantities, the P4 or Athlon arhitetures an speed their performaneup by a fator of 10 or more by using the SIMD unit rather than the salar proessor.Using other bit widths the performane gains are appreiable but not as dramati.Software support for SIMD on PCs was initially poor. Intels earlier C ompilersallowed maro operations to operate on short vetor types that orresponded tothose supported diretly in hardware. Later Intel released a Fortran ompiler (Bik,4



A single 8 bit processor unit
REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

REGS

ALU

 32 bit registers

control
unit

scalar floating point unit

FPU Stack
stack pointer

32 bit scalar integer core, dual issue

on chip
cache

external
main
memory

broadcast SIMD instructions

address

data

SSE attached processor

Figure 3.1. Outline of the Intel P4 arhiteture showing the in-orporated Streamming SIMD unit.Girkar, Grey and Tian 2002) that inorporated tehniques earlier developed for CrayFortran ompilers to allow automati SIMD vetorisation of loops in unmodi�edFortran ode. C ompilers with similar features have been released by Intel andCodeplay. From the viewpoint of the Array Programming Language ommunitysuh approahes fail to take full advantage of array arhitetures. The C and Fortranprograms are still written with a sequential, operation at a time, mindset whih anmake it hard for programmers to think in parallel terms. If they have not asttheir algorithm in parallel form to start out with, they may be unable to arryout the high level algorithmi transformations neessary to take full advantage ofarray arhitetures. It was for this reason that the Fortran ommunity inorporatedAPL onepts in the late 80s. Vetor Pasal (Cokshott 2004, Cokshott 2002) is aPasal extension analogous to High Performane Fortran that has been targeted atSIMD PCs. However, like HPF, it requires the programmer to expliityly alloateand delare arrays whih is markedly less �exible than what ours in APL.4. Future mahinesThe SIMD unit ofthe P4 is targeted at graphis appliations. The byte widearithmeti is of obvious value in image manipulation. The ability to operate on 4element vetors of �oating point numbers is of partiular use in 3D graphis whereone performs viewpoint projetion by multiplying 4 element vetors in homogenouso-ordinates by 4×4 rotation, translation and sale matries. A omputer game mayrequire tens of thousands of verties to be transformed in this way for every videoframe - at say 25Hz. The demands for more realisti games has led hip designers5



Figure 4.1. The arhiteture of the PS/2 proessor. The EE oreinorporates a SIMD unit analgous to that shown in Figure 3.1.to raise the level of parallelism even further. The pioneer in this was Sony whoseEmotion Engine, inorporated in the ¿100 Play Station 2 (PS2) inluded:(1) A MIPS 64 bit ore ating as the ontrol proessor.(2) An integer SIMD unit analogous to that on the P4.(3) A pair of Vetor Proessing Units (VPU), eah of whih ould perform4×32-bit �oating point operations eah lok yle.The PS/2 di�ered from the mahines disussed earlier by inorporating bothSIMD and distributed memory multi-proessing. The VPUs an operate as inde-pendent proessors fething their own instrutions. They have vetor �oating pointregisters and also salar registers for address manipulation. Instead of ahe, theyeah have a modest sized private high speed memory on hip. Annoyingly they areasymetrial in this with one haveing 16K and the other 64K of memory. Vetor pro-essing programs and data reside in this memory. DMA hannels allow the MIPSore proessor to transfer data to and from the private VPU memory and to initiatejobs on the VPUs.The Cell proessor jointly developed by IBM and Sony for use in the PS/3 amongother appliations extends the model of the PS/2 by having 7 vetor units eah with256K of memory on hip. These promise to be able to perform of the order of 50Giga�ops provided that the VPUs an be kept busy. Similar arhitetures are beingdeveloped in other projets(Paulson 2005).At the rux of making superomputer- on-a-hip systems e�e-tive ... will be the programming neessary to get the most outof the iruitry and arhiteture. However .... there are few pro-gramming tools and no programming languages optimized for thispurpose.(Paulson 2005)By dint of great ingenuity it has been possible for vetorising ompilers for salarlanguages to detet a ertain amount of parallelism. The new generation of proes-sors raise the bar enormously. Not only must parallelism be deteted, but data mustbe distributed among a heterogenous olletion of proessors with private memoriesand di�ering instrutinsets.It seems plausible that only array languages whih allow programmers to spe-ify bulk operations in a data-parallel style, and whih have full ontrol over thealloation and plaement of store will be able to meet these proessing needs.6



It is a moot point whether this implies ompiled languages like SAC or inter-pretive languages like APL or J. Given the number of VPU's available to do thebulk alulations, it is plausible that an interpreter running on the ontrol proes-sor ould dispath jobs to the VPUs at a su�ient rate to keep them busy on largeproblems. In either ase, array languages o�er one of the most promising avenuesfor the massive parallelism o�ered by the new parallel vetor mahines. But imple-menting e�ient array language implementations on these mahines will demandsome of the most sophistiated ompilers and interpreters so far developed.ReferenesAbrams, P.: 1970, An APL Mahine, Stanford Linear Aelerator Center, Stanford University,Stanford.Bik, A. J. C., Girkar, M., Grey, P. M. and Tian, X.: 2002, Automati intra-register vetorizationfor the intel arhiteture, Int. J. Parallel Program. 30(2), 65�98.Blelloh, G.: 1995, Nesl: A nested data-parallel language, Vol. CMU-CS-95-170, Carnegie MellonUniversity.Cokshott, P.: 2002, Vetor pasal referene manual, SIGPLAN Not. 37(6), 59�81.Cokshott, P.: 2004, E�ient ompilation of array expressions, SIGAPL APL Quote Quad34(2), 16�25.Emerson W. Pugh, L. R. J. and Palmer, J. H.: 1991, IBM's 360 and Early 370 Systems, MIT.Ewing, A., Rihardson, H., Simpson, A. and Kulkarni, R.: 1998, Writing Data Parallel Programswith High Performane Fortran, Edinburgh ParallelComputing Centre.Grelk, C. and Sholz, S.-B.: 2003, SAC � From High-level Programming with Arrays to E�ientParallel Exeution, Parallel Proessing Letters 13(3), 401�412.Hakami, B.: 1975, E�ient Implementation of APL in a Multilanguage Environment, Interna-tional Computers Ltd.Hassitt, A., Lageshulte, J. and Lyon, L.: 1973, Implementation of a high level language mahine,Communiations of the ACM 16.Hillis, W. D.: 1986, The onnetion mahine, MIT Press, Cambridge, MA, USA.Lavington, S.: 1980, Early British Computers, Manhester University Press, Manhester.Lonergan, W. and King, P.: 1985, Design of the b5000 system, in D. Sieworek, G. Bell andA. Newell (eds), Computer Strutures, MGraw Hill.Metalf, M. and Reid, J.: 1996, The F Programming Language, Oxford Univesity Press.Morse, S., Ravenel, B., Mazor, S. and Pohlman, W.: 1985, Intel miroproessors: 8008 to 8086, inD. Sieworek, G. Bell and A. Newell (eds), Computer Strutures, MGraw Hill.Naur, P. and Bakus, J.: 1960, Report on the algorithmi language algol 60, Danish Aademy ofTehnial Sienes, Copenhagen.Palmer, J. and Morse, S.: 1984, The 8087 primer, Wiley, New York.Paulson, L. D.: 2005, Squeezing superomputers onto a hip, Computer 38(1), 21�23.Perrott, R. H. and Zarea-Aliabadi, A.: 1986, Superomputer languages, ACM Comput. Surv.18(1), 5�22.Reddaway, S. F.: 1973, Dap a distributed array proessor, SIGARCH Comput. Arhit. News2(4), 61�65.Russell, R.: 1985, The ray-1 omputer system, in D. Sieworek, G. Bell and A. Newell (eds),Computer Strutures, MGraw Hill.Sholz, S.-B.: 2003, Single Assignment C � E�ient Support for High-Level Array Operations ina Funtional Setting, Journal of Funtional Programming 13(6), 1005�1059.Smith, W., Rie, R., Cheskey, G., Laliotis, T. and Lundstrum, S.: 1985, The symbol omputer, inD. Sieworek, G. Bell and A. Newell (eds), Computer Strutures, MGraw Hill.Snyder, L.: 1999, A Programmer's Guide to ZPL, MIT Press, Cambridge, Mass.Turing, A.: 1937, On omputable numbers, with an appliation to the entsheidungsproblem,Proeedings of the London Mathematial Soiety 42, 230�65.Dept Computing Siene University of GlasgowE-mail address: wp�ds.gla.a.uk
7


