
Vector Pascal, an array language

Paul Cockshott, University of Glasgow, Imaging Faraday Partnership
Greg Michaelson, Heriot Watt University

January 23, 2002

Abstract

Vector Pascal is a language designed to support elegant and efficient expression of
algorithms using the SIMD model of computation. It imports into Pascal abstraction
mechanisms derived from functional languages having their origins in APL. In partic-
ular it extends all operators to work on vectors of data. The type system is extended
to handle pixels and dimensional analysis. Code generation is via the ILCG system
that allows retargeting to multiple different SIMD instruction sets based on formal de-
scrition of the instruction set semantics.

1 Introduction

The introduction of SIMD instruction sets[13][1][25][14] to Personal Computers poten-
tially provides substantial performance increases, but the ability of most programmers to
harness this performance is held back by two factors. The first is the limited availability of
compilers that make effective use of these instruction sets in a machine independent man-
ner. This remains the case despite the research efforts to develop compilers for multi-media
instruction sets[7][23][21][28]. The second is the fact that most popular programming lan-
guages were designed on the word at a time model of the classic von Neuman computer
rather than the SIMD model.

Vector Pascal aims to provide an efficient and elegant notation for programmers using
Multi-Media enhanced CPUs. In doing so it borrows concepts for expressing data paral-
lelism that have a long history, dating back to Iverson’s work on APL in the early ’60s[16].
We are using the word elegant in the technical sense introduced by Chaiten[6]. By an el-
egant algorithm we mean one which is expressed as concisely as possible. Elegance is a
goal that one approaches asymtotically, approaching but never attaining. APL and J[19]
allow the construction of very elegant programs, but at a cost. An inevitable consequence
of elegance is the loss of redundancy. APL programs are as concise, or even more concise
than conventional mathematical notation[17] and use a special characterset. This makes
them hard for the uninitiated to understand. J attempts to remedy this by restricting itself to
the ASCII characterset, but still looks dauntingly unfamiliar to programmers brought up on
more conventional languages. The aim of Vector Pascal is to provide the conceptual gains
of Iverson’s notation within a framework familiar to imperative programmers.

Pascal[20]was chosen as a base language over the alternatives of C and Java. C was re-
jected because notations likex+y for x andy declared as arithmetic operations are already
overloaded for address operations in a way which precludes their use in map operations.

2 Array mechanisms for data parallelism

Vector Pascal extends the array type mechanism of Pascal to provide better support for data
parallel programming in general, and SIMD image processing in particular. Data parallel
programming can be built up from certain underlying abstractions[9]:

1

• operations on whole arrays

• array slicing

• conditional operations

• reduction operations

• data reorganisation

We will first consider these in general before moving on to look at their support in other
languages, in particular J, Fortran 90[9] and NESL[3] then finally looking at how they are
supported in Vector Pascal.

2.1 Operations on whole arrays

The basicconceptualmechanism is themap, which takes an operator and and a source
array (or pair of arrays) and produces a result array by mapping the source(s) under the
operator. Let us denote the type of an arry ofTasT []. Then if we have a binary operator
ω : (T ⊗ T)→ T , we automatically have an operatorω : (T []⊗ T [])→ T [] . Thus ifx, y
are arrays of integersk = x+ y is the array of integers whereki = xi + yi:

3 5 9 = 2 3 5 + 1 2 4
Similarly if we have a unary operatorµ:(T→T) then we automatically have an operator

µ:(T[]→T[]). Thusz =sqr(x) is the array wherezi = x2
i :

4 9 25 = sqr(2 3 5)
The map replaces theserialisationor for loop abstraction of classical imperative lan-

guages. The map concept is simple, and maps over lists are widely used in functional
programming. For array based languages there are complications to do with the semantics
of operations between arrays of different lengths and different dimensions, but Iverson[16]
provided a consistent treatment of these. Recent languages built round this model are J,
an interpretive language[18][4][19], High Performance Fortran[9], F[24] a modern Fortran
subset, NESL an applicative data parallel language. In principle though any language with
array types can be extended in a similar way. The map approach to data parallelism is
machine independent. Depending on the target machine, a compiler can output sequential,
SIMD, or MIMD code to handle it.

Recent implementations of Fortran, such as Fortran 90, F, and High Performance For-
tran provide direct support for whole array operations. Given thatA,B are arrays with the
same rank and same extents, the statements:

REAL,DIMENSION(64)::A,B
A=3.0
B=B+SQRT(A)*0.5;

would be legal, and would operate in a pointwise fashion on the whole arrays. Intrinsic
functions such as SQRT are defined to operate either on scalars or arrays, but intrinsic
functions are part of the language rather than part of a subroutine library. User defined
functions over scalara do not automatically extend to array arguments.

J1 similarly allows direct implementation of array operations, though here the array
dimensions are deduced at run time:

a=. 1 2 3 5
a

1 2 3 5
b=. 1 2 4 8
a+b

2 4 7 13
1We will give examples from J rather than APL here for ease of representation in ASCII.

2

1 1 1 1
1 2 4 8
1 2 4 16
1 2 8 512

1 1 1 1
1 2 4 8
1 2 4 16
1 2 8 512

1 1 1 1
1 2 4 8
1 2 4 16
1 2 8 512

Figure 1: Different ways of slicing the same array

The pair=. is the assignment operator in J. Unlike Fortran, J automatically overloads user
defined funtions over arrays. In what follows&̂2 is an expression binding the dyadic power
function to the contant 2,sqr a user defined monadic operator.

sqr=.^&2
b=.1 2 4 8
b+(sqr a)*0.5

1.5 4 8.5 20.5

NESL provides similar generality; the first J example above could be expressed as:

{a+b: a in [1,2,3,5]; b in [1,2,4,8]};
=> [2, 4, 7, 13] : [int]

and the second example as:

{b+ sqr(a)*0.5: a in [1,2,3,5]; b in [1,2,4,8]};
=> [1.5, 4, 8.5, 20.5] : [float]

Again user defined functions can be applied element wise, to arrays (or sequences as they
are called in the language). The expressions in { } brackets termed the Apply-to-Each
construct, are descended from the ZF notations used in SETL[27] and MIRANDA[30].

2.2 Array slicing

It is advantageous to be able to specify sections of arrays as values in expression. The
sections may be rows or columns in a matrix, a rectangular sub-range of the elements of an
array, as shown in figure 1. In image processing such rectangular sub regions of pixel arrays
are called regions of interest. It may also be desirable to provide matrix diagonals[31].

The notion of array slicing was introduced to imperative languages by ALGOL 68[29].
In ALGOL 68 if x has been declared as [1:10]INT x, then x[2:6] would be a slice that could
be used assignment or as an actual parameter.

Fortran 90 extends this notion to allow what it calls triplet subscripts, giving the start
position end position and step at which elements are to be taken from arrays.

REAL,DIMENSION(10,10)::A,B
A(2:9,1:8:2)=B(3:10,2:9:2)

would be equivalent to the loop nest:

DO 1,J=1,8,2
DO 2, J=2,9

A(I,J)=b(I+1,J+1)
2 CONTINUE
1 CONTINUE

J allows a similar operation to select subsequences. In what followsi. n is a function
which produces a list of the firstn starting with 0, and{ is the sequence subscription
operator.

3

a=. 2*i.10
a

0 2 4 6 8 10 12 14 16 18
3{a

6

Selection of a subsequence is performed by forming a sequence of indices. Thus to select
the 3 consecutive elements starting with the second, we first form the sequence2 3 4
using the expression2+i.3 and use this to subscript the arraya:

(2+i.3){a
4 6 8

2.3 Conditional operations

For data parallel programming one frequently wants to make an operation work on some
subset of the data based on some logical mask. This can be thought of providing a finer
grain of selection than subslicing, allowing arbitrary combinations of array elements to be
acted on. For example one might want to replace all elements of an array A less than the
corresponding element in array B with the corresponding element of B.

1 2 4 8 A
2 3 4 5 B
1 1 0 0 A<B
2 3 4 8

Fortran 90 provides a mechanism to selectively update a section of an array under a
logical mask, theWHEREstatement.

REAL, DIMENSION(64)::A
REAL, DIMENSION(64)::B
WHERE (A>B)

A=A
ELSE WHERE

A= B
END WHERE

The WHEREstatement is analogous to ALGOL 68 andC conditional expressions, but ex-
tended to operate on arrays. It can be performed in parallel on all elements of an array and
lends itself to evaluation under a mask on SIMD architectures.

NESL provides a generalised form of Apply-to-Each in which a sieve can be applied to
the arguments as in:

{ a+b : a in[1,2,3]; b in [4,3,2] |a<b}
=> [5,5] : [int]

Notice that in NESL as in J values are allocated dynamically from a heap so that the length
of the sequence returned from a sieved Apply-to-Each can be less than that of the argument
sequences in its expression part. In Fortran 90, theWHEREstatement applies to an array
whose size is known on entry to the statement.

2.4 Reduction operations

In a reduction operation, a dyadic operator injected between the elements of a vector, the
rows or columns of a matrix etc, produces a result of lower rank. Examples would be the
forming the sum of a table or finding the maximum or minimum of a table. So one could
use + to reduce1 2 4 8 to 1+2+4+8=15

4

1 2 4
8 16 32

transposes to
1 8
2 16
4 32

Figure 2: Reorganising by transposition

1 2 4 8 convolve(0.25 0.5 0.25)=

0.5 1 2 2
0.5 1 2 4
0.25 0.25 0.5 1

1.25 2.25 4.5 7

Figure 3: Convolution by shifting

The first systematic treatment of reduction operations in programming languages is due
to Iverson[16]. He introduced the notion of a reduction functional which takes a dyadic
operator and, by currying, generates a tailored reduction function. In APL as in J the
reduction functional is denoted by/ . Thus+/ is the function which forms the sum of an
array.

a
1 2 3 5

+/a
11

The interpretation of reduction for comutative operators is simple, for non comutative ones
it is slightly less obvious. Consider:

-/a
_3

The_3 here, is the J notation for -3, derived from the expansion(1− (2− (3− 4(−0)))),
just as 11 was derived from the expansion(1+(2+(3+(4+0)))). In J as in APL reduction
applies uniformly to all binary operators.

Fortran 90, despite its debt to APL, is less general, providing a limited set of built in
reduction operators on comutative operators:SUM, PRODUCT, MAXVAL, MINVAL.
NESL likewise provides a limited set of reduction functionssum, minval, maxval,
any, all . The last two are boolean reductions,any returns true if at least one element
of a sequence is true,all if they are all true.

2.5 Data reorganisation

In both linear algebra and image processing applications, it is often desireable to be able to
perform bulk reorganisation of data arrays.

One may want to transpose a vector or matrix, or to shift the elements of a vector. For
example, one can express the convolution of a vector with a three element kernel in terms
of multiplications, shifts and adds. Leta = 1 2 4 8 be a vector to be convolved
with the kernelk = 0.25 0.5 0.25 . This can be expressed by defining two temporary
vectors

b, c = 0.25a, 0.5a = 0.25 0.5 1 2 , 0.5 1 2 4

and then defining the result to the sum under shifts ofb, c as shown in figure 3 This exam-
ple replicates the trailing value when shifting. In other circumstances, when dealing with
cellular automata for example, it is convenient to be able to define circular shifts on data
arrays.

Fortran 90 provides a rich set of functions to reshape, transpose and circularly shift
arrays. For instance given a 9 element vector v we can reshape it as a 3 by 3 matrix

5

V= (/ 1,2,3,4,5,6,7,8,9 /)
M=RESHAPE(V,(/3,3/))

gives us the array

1 2 3
4 5 6
7 8 9

We can then cyclically shift this along a dimension

M2=CSHIFT(M,SHIFT=2,DIM=2)

to give

3 1 2
6 4 5
9 7 8

NESL provides on sequences, similar operations to those provided on arrays by Fortran 90,
so that if

v =[1,2,3,4,5,6,7,8,9]
s =[3,3,3]
partition(v,s)=[[1,2,3][4,5,6],7,8,9]]
rotate(v,3) =[7,8,9,1,2,3,4,5,6]

3 Data parallelism in Vector Pascal

3.1 Assignment maps

Standard Pascal allows assignement of whole arrays. Vector Pascal extends this to allow
consistent use of mixed rank expressions on the right hand side of an assignment. Given

r0:real; r1:array[0..7] of real; r2:array[0..7,0..7] of real
then we can write

1. r1:= r2[3]; { supported in standard Pascal }

2. r1:= 1/2; { assign 0.5 to each element of r1 }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. r1:= \+ r2; { r1gets the totals along the rows of r2}

5. r1:= r1+r2[1];{ r1 gets the corresponding elements of row 1 of r2 added to it}

The assignment of arrays is a generalisation of what standard Pascal allows. Consider the
first examples above, they are equivalent to:

1. for i:=0 to 7 do r1[i]:=r2[3,i];

2. for i:=0 to 7 do r1[i]:=1/2;

3. for i:=0 to 7 do for j:=0 to 7 do r2[i,j]:=r1[j]*3;

4. for i:=0 to 7 do begin t:=0; for j:=7 downto 0 do t:=r2[i,j]+t; r1[i]:=t; end;

5. for i:=0 to 7 do r1[i]:=r1[i]+r2[1,i];

6

In other words the compiler has to generate an implicit loop over the elements of the array
being assigned to and over the elements of the array acting as the data-source. In the above
i,j,t are assumed to be temporary variables not refered to anywhere else in the program.
The loop variables are called implicit indices and may be accessed usingiota.

The variable on the left hand side of an assignment defines an array context within
which expressions on the right hand side are evaluated. Each array context has a rank
given by the number of dimensions of the array on the left hand side. A scalar variable has
rank 0. Variables occuring in expressions with an array context of rankr must haver or
fewer dimensions. Then bounds of anyn dimensional array variable, withn ≤ r occuring
within an expression evaluated in an array context of rankr must match with the rightmost
n bounds of the array on the left hand side of the assignment statement.

Where a variable is of lower rank than its array context, the variable is replicated to
fill the array context. This is shown in examples 2 and 3 above. Because the rank of
any assignment is constrained by the variable on the left hand side, no temporary arrays,
other than machine registers, need be allocated to store the intermediate array results of
expressions.

Maps are implicitly and promiscously defined on both monadic operators and unary
functions. Iff is a function or unary operator mapping from typer to typet then if x is an
array ofr thena:=f(x) assigns an array oft such thata[i]=f(x[i]) .

Functions can return any data type whose size is known at compile time, including
arrays and records. A consistent copying semantics is used.

3.2 Slice operations

Image processing applications often have to deal with regions of interest, rectangular sub-
images within a larger image. Vector Pascal extends the array abstraction to define sub-
ranges of arrays. A sub-range of an array variable are denoted by the variable followed by
a range expression in brackets.

The expressions within the range expression must conform to the index type of the array
variable. The type of a range expressiona[i..j] wherea: array[p..q] of t is array[0..j-i] of
t.

Examples
dataset[i..i+2]:=blank;
twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;
Subranges may be passed in as actual parameters to procedures whose corresponding

formal parameters are declared as variables of a schematic type. Hence given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny..maxy,minx..maxx] of pixel;
procedure invert(var im:image);begin im:= - im; end;
var screen:array[0..319,0..199] of pixel;
then the following statement would be valid:
invert(screen[40..60,20..30]);
A particular form of slicing is to select out the diagonal of a matrix. The syntactic

form diag<expression> selects the diagonal of the matrix to which it applies. A precise
definition of this is given in section 3.5.

3.3 Conditional update operations

In Vector Pascal the sort of conditional updates handled by the FortranWHEREstatement,
are programmed using conditional expressions. The Fortran code shown in 2.3 would
translate to

var a:array[0..63] of real;
a:=if a>0 then a else -a
The if expression can be compiled in two ways:

7

1. Where the two arms of the if expression are parallelisable, the condition and both
arms are evaluated and then merged under a boolean mask so the above assignment
would be equivalent to:

a:= (a and (a>0))or(not (a>0) and -a);

were the above legal Pascal2.

2. If the code is not paralleliseable it is translated as equivalent to a standard if state-
ment, so the previous example would be equivalent to:

for i:=0 to 63 do if a[i]>0 then a[i]:=a[i] else a[i]:=-a[i];

Expressions are non parallelisable if they include function calls.

The dual compilation strategy allows the same linguistic construct to be used in recursive
function definition and parallel data selection.

3.4 Operator Reduction

Maps take operators and arrays and deliver array results. Thereduction abstraction takes
a dyadic operator and an array and returns a scalar result. It is denoted by the functional
form \. Thus if a is an array, \+a denotes the sum over the array. More generally\Φx for
some dyadic operatorΦ meansx0Φ(x1Φ..(xnΦι)) whereι is the identity element for the
operator and the type. Thus we can write \+ for

∑
, * for

∏
etc. The dot product of two

vectors can thus be written as
x:=\+(y*z);
instead of
x:=0;
for i:=0 to n do x:= x+ y[i]*z[i];
A reduction operation takes an argument of rankr and returns an argument of rankr-1

except in the case where its argument is or rank 0, in which case it acts as the identity
operation. Reduction is always performed along the last array dimension of its argument.

Semantically reduction by an operator say� is defined such that
var a:array[low..high] of t;x:t;
x:=\�a;
is equivalent to:
var temp:t; i:low..high;
temp:= identity(t,�);
for i:= high downto low do temp:=a[i]�temp;
x:=temp;
Whereidentity(t,�) is a function returning the identity element under the operator� for

the typet. The identity element is defined to be the value such thatx = x�identity(t,�).
Identity elements for operators and types are shown in table 1.

3.5 Array reorganisation

By array reorganisation, we mean conservative operations, which preserve the number of
elements in the orignal array. If the shape of the array is also conserved we have an element
permutation operation. If the shape of the array is not conserved but it’s rank and extents
are, we have a permutation of the array dimensions. If the rank is not conserved we have a
flattening or reshaping of the array.

2This compilation strategy requires that true is equivalent to -1 and false to 0. This is typically the represen-
tation of booleans returned by vector comparison instructions on SIMD instruction sets. In Vector Pascal this
representation is used generally and in consequence,true<false.

8

Vector Pascal provides syntactic forms to access and manipulate the implicit indices
used in maps and reductions. These syntactic forms allow the concise expression of many
conservative array reorganisations.

The form iota i returns theith current implicit index. Thus given the definitions
v1:array[1..3]of integer; v2:array[0..4]of integer;
the program fragment
v1:=iota 0; v2:=iota 0 *2;
would set v1 and v2 as follows:

v1= 1 2 3
v2= 0 2 4 6 8

whilst given the definitions
m1:array[1..3,0..4] of integer;m2:array[0..4,1..3]of integer;
then the program fragment
m2:= iota 0 +2*iota 1;
would set m2

m2=
2 4 6
3 5 7
4 6 8
5 7 9
6 8 10

The argument to iota must be an integer known at compile time within the range of implicit
indices in the current context.

A generalised permutation of the implicit indices is performed using the syntatic form
perm[<index-sel>[,<index-sel>]*] <expression>. The <index-sel>s are integers known at
compile time which specify a permution on the implicit indices. Thus ine evaluated in
contextperm[i, j, k]e, theniota 0 =iota i, iota 1=iota j, iota 2=iota k.

An example of where this is useful is in converting between different image formats.
Hardware frame buffers typically represent images with the pixels in the red, green, blue,
and alpha channels adjacent in memory. For image processing it is convenient to hold them
in distinct planes. Theperm operator provides a concise notation for translation between
these formats:

screen:=perm[2,0,1]img;
where:
type rowindex=0..479;colindex=0..639;channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;
trans anddiag provide shorthand notions for expressions in terms ofperm. Thus in an

assignment context of rank 2,trans = perm[1,0] anddiag = perm[0,0]. The formtransx
transposes a vector3matrix, or tensor. It achieves this by cyclic rotation of the implicit
indices. Thus iftrans e , for some expressione is evaluated in a context with implicit
indices

iota 0.. iota n
then the expression e is evaluated in a context with implicit indices
iota’0.. iota’n
where
iota’x = iota ((x+1)mod n+1)
It should be noted that transposition is generalised to arrays of rank greater than 2.

3Note thattrans is not strictly speaking an operator, as there exists no Pascal type corresponding to a column
vector.

9

Examples Given the defintions used above, the program fragment:
m1:= (trans v1)*v2;
m2 := trans m1;
will set m1 and m2:

m1=
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24
m2=
0 0 0
2 4 6
4 8 12
6 12 18
8 16 24

3.5.1 Array shifts

The shifts and rotations of arrays supported in Fortran 90 and NESL are not supported
by any explicit operator, though one can of course use a combination of other features to
achieve them. A left rotation can for instance be achieved as follows:

a:=b[(1+iota 0)mod n];
and a reversal by
a:=b[n-iota 0 -1];
Where in both examples:
var a,b:array[0..n-1] of integer;

3.6 Efficiency considerations

Expressions involving transposed vectors, matrix diagonals, and permuted vectors or in-
dexing by expressions involving modular arithmetic oniota, do not paralellise well on
SIMD architectures like the MMX, since these depend upon the fetching of blocks of ad-
jacent elements into the vector registers. This requires that element addresses be adjacent
and monotonically increasing. Assignments involving mapped vectors will usually have to
be handled by scalar registers.

3.6.1 Element permutation

Permutations are widely used in APL and J programming, an example being sorting and
arraya into descending order using the J expression\:a{a which uses the operator
\: to produce a permutation of the indices ofa in descending order, and then uses { to
index a with this permutation vector. If one is to use analogous constructs, one muse
allow an array may be indexed by another array. Ifx:array[t0] of t1 andy:array[t1] of
t2, then in Vector Pascal,y[x] denotes the virtual array of typearray[t0] of t2 such that
y[x][i]=y[x[i]] .

Example Given the declarations
const perm:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
ma:=m0[perm];
would set the variables such that

10

m0= 1 2 3 4
perm= 3 1 2 0
ma= 4 2 3 1

4 Extensions to the Pascal Type System

4.1 Pixels

Standard Pascal is a strongly typed language, with a comparatively rich collection of type
abstractions : enumeration, set formation, sub-ranging, array formation, cartesian product4

and unioning5. However as an image processing language it suffers from the disadvantage
that no support is provided for pixels and images. Given the vintage of the language this
is not surprising and, it may be thought, this deficiency can be readily overcome using
existing language features. Can pixels not be defined as a subrange 0..255 of the integers,
and images modeled as two dimensional arrays?

They can be, and are so defined in many applications, but such an approach throws
onto the programmer the whole burden of handling the complexities of limited precision
arithmetic. Among the problems are:

1. When doing image processing it is frequently necessary to subtract one image from
another, or to create negatives of an image. Subtraction and negation implies that
pixels should be able to take on negative values.

2. When adding pixels using limited precision arithmetic, addition is nonmontonic due
to wrap-round. Pixel values of100+200 = 300, which in 8 bit precision is truncated
to 44 a value darker than either of the starting values. A similar problem can arise
with subtraction, for instance100− 200 = 156 in 8 bit unsigned arithmetic.

3. When multiplying 8 bit numbers, as one does in executing a convolution kernel, one
has to enlarge the representation and shift down by an appropriate amount to stay
within range.

These and similar problems make the coding of image filters a skilled task. The difficulty
arises because one is using an inappropriate conceptual representation of pixels.

The conceptual modelof pixels in Vector Pascal is that they are real numbers in the
range−1.0..1.0. This representation overcomes the aforementioned difficulties. As a
signed representation it lends itself to subtraction. As an unbiased representation, it makes
the adjustment of contrast easier, one can reduce contrast 50% simply by multiplying an
image by 0.56. Assignment to pixel variables in Vector Pascal is defined to be saturating
- real numbers outside the range−1..1 are clipped to it. The multiplications involved in
convolution operations fall naturally into place.

The implementation modelof pixels used in Vector Pascal is of 8 bit signed integers
treated as fixed point binary fractions. All the conversions necessary to preserve the mono-
tonicity of addition, the range of multiplication etc, are delegated to the code generator
which, where possible, will implement the semantics using efficient, saturated multi-media
arithmetic instructions.

4.2 Dimensioned Types

Dimensional analysis is familiar to scientists and engineers and provides a routine check on
the sanity of mathematical expressions. Dimensions can not be expressed in the otherwise

4Therecord construct.
5Thecaseconstruct in records.
6When pixels are represented as integers in the range 0..255, a 50% contrast reduction has to be expressed as

((p− 128)÷ 2) + 128.

11

rigourous type system of standard Pascal, but they are a useful protection against the sort
of programming confusion between imperial and metric units that caused the demise of a
recent Mars probe. They provide a means by which floating point types can be specialised
to represent dimensioned numbers as is required in physics calculations. For example:

kms =(mass,distance,time);
meter=real of distance;
kilo=real of mass;
second=real of time;
newton=real of mass * distance * time POW -2;
meterpersecond = real of distance *time POW -1;
The identifier must be a member of a scalar type, and that scalar type is then refered to as

thebasis spaceof the dimensioned type. The identifiers of the basis space are refered to as
the dimensions of the dimensioned type. Associated with each dimension of a dimensioned
type there is an integer number refered to as the power of that dimension. This is either
introduced explicitly at type declaration time, or determined implicitly for the dimensional
type of expressions.

A value of a dimensioned type is a dimensioned value. Letlogd t of a dimensioned
typet be the power to which the dimensiond of typet is raised. Thus fort =newton in the
example above, andd =time, logd t = −2

If x andy are values of dimensioned typestxand tyrespectively, then the following
operators are only permissible iftx = ty: +, - ,<, >, =, <=, >=. For + and -, the dimensional
type of the result is the same as that of the arguments. The operations. The operations *, /
are permited if the typestxandty share the same basis space, or if the basis space of one
of the types is a subrange of the basis space of the other.

The operationPOW is permited between dimensioned types and integers.

Dimension deduction rules

1. If x = y ∗ z for x : t1, y : t2, z : t3 with basis spaceB then∀d∈B logd t1 =
logd t2 + logd t3.

2. If x = y/z for x : t1, y : t2, z : t3 with basis spaceB then∀d∈B logd t1 = logd t2 −
logd t3.

3. If x = y POW z for x : t1, y : t2, z : integer with basis space fort2, B then
∀d∈B logd t1 = logd t2 × z.

5 Operators

5.0.1 Dyadic Operations

Dyadic operators supported are+, +:, -:, -, *, /, div, mod , **, pow, <, >, >=, <=, =, <>,
shr, shl, and, or, in, min, max. All of these are consistently extended to operate over
arrays. The operators **, pow denote exponentiation and raising to an integer power as in
ISO Extended Pascal. The operators +: and -: exist to support saturated arithmetic on bytes
as supported by the MMX instruction set.

5.0.2 Unary operators

The unary operators supported are+, -, *, /, max, min, div, not, round, sqrt, sin, cos, tan,
abs, ln, ord, chr, succ, predand@.

Thus the following are valid unary expressions: -1, +b, not true, sqrt abs x, sin theta.
In standard Pascal some of these operators are treated as functions,. Syntactically this
means that their arguments must be enclosed in brackets, as insin(theta). This usage
remains syntactically correct in Vector Pascal.

12

Table 1: Identity element

type operators identity elem

number +,- 0
set + empty set
set -,* fullset

number *,/ ,div,mod 1
boolean and true
boolean or false

type
complex = record data: array[0..1] of real;end;

var complexzero,complexone:complex;

{ headers for functions onto the complex numbers }
function cmplx (realpart,imag:real):complex;
function complex_add (A,B:Complex):complex;
function complex_conjugate (A:Complex):complex;
function complex_subtract (A,B:Complex):complex;
function complex_multiply (A,B:Complex):complex;
function complex_divide (A,B:Complex):complex;
function im (c:complex):real;
function re (c:complex):real;
{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = complex_add, complexzero;
operator / = complex_divide, complexone;
operator * = complex_multiply, complexone;
operator - = complex_subtract, complexzero;

Figure 4: Defining operations on complex numbers
Note that only the function headers are given here as this code comes from the interface part of the
system unit. The function bodies and the initialisation of the variables complexone and complexzero
are handled in the implementation part of the unit.

The dyadic operators are extended to unary context by the insertion of an identity ele-
ment under the operation. This is a generalisation of the monadic use of + and - in standard
pascal where+a=0+aand-a = 0-awith 0 being the additive identity, so too/2 = 1/2with 1
the multiplicative identity. For sets the notation-s means the complement of the sets. The
identity elements inserted are given in table 1.

5.0.3 Operator overloading

The dyadic operators can be extended to operate on new types by operator overloading.
Figure 4 shows how arithmetic on the typecomplex required by Extended Pascal [15] is
defined in Vector Pascal. Each operator is associated with a semantic function and an iden-
tity element. The operator symbols must be drawn from the set of predefined vector pascal
operators, and when expressions involving them are parsed, priorities are inherited from
the predefined operators. The type signature of the operator is deduced from the type of the
function7. When parsing expressions, the compiler first tries to resolve operations in terms

7Vector Pascal allows function results to be of any type.

13

of the predefined operators of the language, taking into account the standard mechanisms
allowing operators to work on arrays. Only if these fail does it search for an overloaded
operator whose type signature matches the context.

In the example in figure 4, complex numbers are defined to be records containing an ar-
ray of reals, rather than simply as an array of reals. Had they been so defined, the operators
+,*,-,/ on reals would have masked the corresponding operators on complex numbers.

The provision of an identity element for complex addition and subtraction ensures that
unary minus, as in−x for x :complex, is well defined, and correspondingly that unary /
denotes complex reciprocal. Overloaded operators can be used in array maps and array
reductions.

6 An example algorithm

As an example of Vector Pascal we will look at an image filtering algorithm. In particular
we will look at applying a separable 3 element convolution kernel to an image. We shall
initially present the algorithm in standard Pascal and then look at how one might re-express
it in Vector Pascal.

Convolution of an image by a matrix of real numbers can be used to smooth or sharpen
an image, depending on the matrix used. IfA is an output image,K a convolution matrix,
then ifB is the convolved image

By,x =
∑
i

∑
j

Ay+i,x+jKi,j

A separable convolution kernel is a vector of real numbers that can be applied indepen-
dently to the rows and columns of an image to provide filtering. It is a specialisation of the
more general convolution matrix, but is algorithmically more efficient to implement. Ifk
is a convolution vector, then the corresponding matrixK is such thatKi,j = kikj .

Given a starting imageA as a two dimensional array of pixels, and a three element
kernelc1, c2, c3, the algorithm first forms a temporary arrayT whose whose elements are
the weighted sum of adjacent rowsTy,x = c1Ay−1,x+c2Ay,x+c3Ay+1,x. Then in a second
phase it sets the original image to be the weighted sum of the columns of the temporary
array:Ay,x = c1Ty,x−1 + c2Ty,x + c3Ty, x+ 1. Clearly the outer edges of the image are
a special case, since the convolution is defined over the neighbours of the pixel, and the
pixels along the boundaries a missing one neighbour. A number of solutions are available
for this, but for simplicity we will perform only vertical convolutions on the left and right
edges and horizontal convolutions on the top and bottom lines of the image.

Figure 5 showsconv an implementation of the convolution in Standard Pascal. The
pixel data type has to be explicitly introduced as the subrange -128..127. Explicit checks
have to be inplace to prvent range errors, since the result of a convolution may, depending
on the kernel used, be outside the bounds of valid pixels. Arithmetic is done in floating
point and then rounded.

Image processing algorithms lend themselves particularly well to data-parallel expres-
sion, working as they do on arrays of data subject to uniform operations. Figure 6 shows
a data-parallel version of the algorithm,pconv , implemented in Vector Pascal. Note that
all explicit loops disappear in this version, being replaced by assignments of array slices.
The first line of the algorithm initialises three vectorsp1, p2, p3 of pixels to hold the
replicated copies of the kernel coefficientsc1, c2, c3 in fixed point format. These
vectors are then used to multiply rows of the image to build up the convolution. The nota-
tion theim[][1..maxpix-1] denotes columns 1..maxpix-1 of all rows of the image.
Because the built in pixel data type is used, all range checking is handled by the compiler.
Since fixed point arithmetic is used throughout, there will be slight rounding errors not
encountered with the previous algorithm, but these are acceptable in most image process-

14

type
pixel = -128..127;
tplain = array[0..maxpix ,0..maxpix] of pixel;

procedure conv(var theim:tplain;c1,c2,c3:real);
var tim:array[0..maxpix,0..maxpix]of pixel;

temp:real;
i,j:integer;

begin
for i:=1 to maxpix-1 do

for j:= 0 to maxpix do begin
temp:= theim[i-1][j]*c1+theim[i][j]*c2+theim[i+1][j]*c3;
if temp>127 then temp :=127 else
if temp<-128 then temp:=-128;
tim[i][j]:=round(temp);

end;
for j:= 0 to maxpix do begin

tim[0][j]:=theim[0][j]; tim[maxpix][j]:=theim[maxpix][j];
end;
for i:=0 to maxpix do begin

for j:= 1 to maxpix-1 do begin
temp:= tim[i][j-1]*c1+tim[i][j+1]*c3+tim[i][j]*c2;
if temp>127 then temp :=127 else
if temp<-128 then temp:=-128;
tim[i][j]:=round(temp);

end;
theim[i][0]:=tim[i][0]; theim[i][maxpix]:=tim[i][maxpix];

end;
end;

Figure 5: Standard Pascal implementation of the convolution

procedure pconv(var theim:tplain;c1,c2,c3:real);
var tim:array[0..maxpix,0..maxpix]of pixel;

p1,p2,p3:array[0..maxpix]of pixel;
begin

p1:=c1; p2:=c2; p3:=c3;
tim [1..maxpix-1] :=

theim[0..maxpix-2]*p1 +theim[1..maxpix-
1]*p2+theim[2..maxpix]*p3;

tim[0]:=theim[0]; tim[maxpix]:=theim[maxpix];
theim[][1..maxpix-1]:=

tim[][0..maxpix-2]*p1+tim[][2..maxpix]*p3+tim[][1..maxpix-
1]*p2;

theim[][0]:=tim[][0]; theim[][maxpix]:=tim[][maxpix];
end;

Figure 6: Vector Pascal implementation of the convolution

15

Table 2: Comparative Performance on Convolution
Algorithm Implementation Target Processor Million Ops Per Second
conv Vector Pascal Pentium + MMX 61

Borland Pascal 286 + 287 5.5
Delphi 4 486 86
DevPascal 486 62

pconv Vector Pascal 486 80
Vector Pascal Pentium + MMX 817

Measurements done on a 1Ghz Athlon, running Windows 2000.

ing applications. Fixed point pixel arithmetic has the advantage that it can be efficently
implemented in parallel using multi-media instructions.

It is clear that the data-parallel implementation is somewhat more concise than the
sequential one, 12 lines with 505 characters compared to 26 lines with 952 characters.
It also runs considerably faster, as shown in table 2. This expresses the performance of
different implementations in millions of effective arithmetic operations per second. It is
assumed that the basic algorithm requires 6 multiplications and 6 adds per pixel processed.
The data parallel algorithm runs 12 times faster than the serial one when both are compiled
using Vector Pascal and targeted at the MMX instructionset. Thepconv also runs a third
faster thanconv when it is targeted at the 486 instructionset, which in effect, serialises the
code.

For comparisonconv was run on other Pascal Compilers8, DevPascal 1.9, Borland
Pascal and its successor Delphi9. These are extended implementations, but with no support
for vector arithmetic. Delphi is are state of the art commercial compilers, as Borland Pascal
was when released in 1992. DevPas is a recent free compiler. In all cases range checking
was enabled for consistency with Vector Pascal. The only other change was to define the
type pixel as equivalent to the system type shortint to force implementation as a signed
byte. Delphi runsconv 40% faster than Vector Pascal does, whereas Borland Pascal runs
it at only 7% of the speed, and DevPascal is roughly comparable to Vector Pascal.

Further performance comparisons are given in table 3. The tests here involve vector
arithmetic on vectors of length 640 and take the general formv1 = v2φv3 for some operator
φ and some vectorsv1, v2, v3. The exception being the dot product operation coded as

r:=\+ r2*r3

in Vector Pascal, and using conventional loops for the other compilers. When targeted on
a 486 the performance of the Vector Pascal compiler for vector arithmetic is consistently
better than that of other compilers. The exception to this is dot product operations on which
Delphi performs particularly well. When the target machine is a K6 which incorporates
both the MMX and the 3DNow SIMD instruction sets, the acceleration is broadly in line
with the degree of parallelism offered by the architecture: 8 fold for byte operands, 4 fold
for 16 bit ones, and 2 fold for integers and reals. The speedup is best for the 8 bit operands,
a sevenfold acceleration on byte additions for example. For larger operands it falls off to
60% for 32 bit integers and 33% for 32 bit reals. As shown in table?? the Intel P3 gives
slightly greater vectorisation gains for floating point arithmetic. For both the Athlon and the
P3 the vectorisation gains on floating point arithmetic are disappointingly low compared to
those obtained for other data types.

For data types where saturated arithmetic is used, the accleration is most marked, a 12
fold acceleration being achieved for saturated byte additions and a 16 fold acceleration on
pixel additions. These additional gains come from the removal of bounds checking code
that would otherwise be required.

8In addition to those shown the tests were perfomed on PascalX, which failed either to compile or to run the
benchmarks. TMT Pascal failed to run the convolution test.

9version 4

16

Table 3: Performance on vector kernels
DevP TMT BP 286 DP 486 VP 486 VP K6 test
71 80 46 166 333 2329 unsigned byte additions
55 57 38 110 179 2329 saturated unsigned byte additions
85 59 47 285 291 466 32 bit integer additions
66 74 39 124 291 1165 16 bit integer additions
47 10 33 250 291 388 real additions
49 46 23 98 146 2330 pixel additions
67 14 39 99 146 1165 pixel multiplications
47 10 32 161 146 141 real dot product
79 58 33 440 161 166 integer dot product

DevP - Dev Pascal version 1.9
TMT - TMT Pascal version 3
BP 286 - Borland Pascal compiler with 287 instructions enabled range checks off.
DP 486 - Delphi version 4
VP 486 - Vector Pascal targeted at a 486
VP K6 - Vector Pascal targeted at and AMD K6
All figures in millions of operations per second on a 1 Ghz Athlon.

Table 4: Vectorisation gains with P3 and Athlon processors
P3 Athlon

operation % vectorisation speedup % vectorisation speedup
byte+ 423 599
byte +: 1126 1201
int + 75 60
short + 332 300
real + 62 33
pixel + 814 1496
pixel * 290 698
real dot product 29 -3
integer dot product -4 3

Figures give the % speedup from using native code generators versus generic 486 code
generators on a 450Mhz P3 and a 1Ghz Athlon.

17

Table 5: Dhrystone performance

Compiler Dhrystones per sec Microseconds Per Dhrystone

Borland Pascal 444444 2.3
Vector Pascal 805282 1.2
TMT Pascal 1123848 0.9
DevPascal 1404494 0.7

Delphi 2472187 0.4

Performance on the Dhrystone Benchmark For an indicator of the performance of
Vector Pascal on other instruction mixes, the Dhrystone Pascal benchmark was used. This
indicates that Vector Pascal is substantially slower on such instruction mixes than Delphi
but considerably faster than Borland Pascal. All measurements were performed on a 1Ghz
Athlon. One reason why the Delphi compiler is so fast is its use of registers for parameter
passing in procedure calls.

7 Implementation

At the heart of our implementation is the machine independent Intermediate Language for
Code Generation (ILCG). ILCG[8] is strongly typed, supporting the base types common
in most programming languages along with type constructors for vectors, stacks and ref-
erences. In particular, operators may be implicitly overloaded for vector operations. Its
purpose is to act as an input to an automatically constructed code generator, working on the
syntax matching principles described in [11]. Simple rules link high-level register transfer
descriptions with the equivalent low-level assembly representations. ILCG may be used as
a machine-oriented semantics of a high-level program or of a CPU. It may also be used as
an intermediate language for program transformation.

7.1 Analogous work

There has been sustained research within the parallel programming community into the
exploitation of SIMD parallelism on multi-processor architectures. Most work in this field
has been driven by the needs of high-performance scientific processing, from finite element
analysis to meteorology. In particular, there has been considerable interest in exploiting
data parallelism in FORTRAN array processing, culminating in High Performance Fortran
and F. Typically this involves two approaches. First of all, operators may be overloaded to
allow array-valued expressions, similar to APL. Secondly, loops may be analysed to estab-
lish where it is possible to unroll loop bodies for parallel evaluation. Compilers embodying
these techniques tend to be architecture specific to maximise performance and they have
been aimed primarily at specialised super-computer architectures, even though contempo-
rary general purpose microprocessors provide similar features, albeit on a far smaller scale.

There has been recent interest in the application of vectorisation techniques to instruc-
tion level parallelism. Thus, Cheong and Lam [7] discuss the use of the Stanford University
SUIF parallelising compiler to exploit the SUN VIS extensions for the UltraSparc from C
programs. They report speedups of around 4 on byte integer parallel addition. Krall and
Lelait’s compiler [21] also exploits the VIS extensions on the Sun UltraSPARC processor
from C using the CoSy compiler framework. They compare classic vectorisation tech-
niques to unrolling, concluding that both are equally effective, and report speedups of 2.7
to 4.7. Sreraman and Govindarajan [28] exploit Intel MMX parallelism from C with SUIF,
using a variety of vectorisation techniques to generates inline assembly language, achieving
speedups from 2 to 6.5. All of these groups target specific architectures. Finally, Leupers

18

Figure 7: System Architecture

[23] has reported a C compiler that uses vectorising optimisation techniques for compiling
code for the multimedia instruction sets of some signal processors, but this is not gener-
alised to the types of processors used in desktop computers.

There has been extensive research, initiated by Graham and Glanville, into the auto-
matic production of code generators but predominantly for conventional rather than parallel
instruction sets. There has also been research in the hardware/software co-design commu-
nity into compilation techniques for non-standard architectures. Leupers [22] MIMOLA
language allows the expression of both programs and structural hardware descriptions,
driving the micro-code compiler MSSQ. Hadjiyiannis’ [12] Instruction Set Description
Language and Ramsey and Davidson’s [26] Specification Language for Encoding and De-
coding are also aimed at embedded systems, based on low level architecture descriptions.It
is not clear whether MIMOLA, ISDL or SLED could readily be used for describing data
parallelism through operator overloading as found in MMX extensions. Furthermore, ISDL
and SLED’s type systems will not readily express the vector types required for MMX.

To exploit MMX and other extended instruction sets it is desirable to develop compiler
technology based on a richer meta-language which can express non-standard instruction
sets in a succinct but architecture independent manner. Such a meta-language should sup-
port a rich set of types and associated operators, and be amenable to formal manipulation.
It should also support a relatively high level of abstraction from different manufacturers’
register level implementations of what are effectively the same MMX operations.

7.2 Intermediate Language for Code Generation

A Vector Pascal program is translated into an ILCG abstract semantic tree implemented as
a Java datastructure. The tree is passed to a machine generated Java class corresponding
to the code generator for the target machine. Code generator classes currently exist for the
Intel 486, Pentium with MMX, and P3 and also the AMD K6. Output is assembler code
which is assembled using the NASM assembler and linked using the gcc loader.

The code generators follow the pattern matching approach described in[2][5]and [11],
and are automatically generated from machine specifications written in ILCG . ILCG is
a strongly typed language which supports vector data types and the mapping of operators
over vectors. It is well suited to describing SIMD instruction sets. The code generator
classes export from their interfaces details about the degree of parallelism supported for
each data-type. This is used by the front end compiler to iterate over arrays longer than
those supported by the underlying machine. Where supported parallelism is unitary, this
defaults to iteration over the whole array.

Selection of target machines is by a compile time switch which causes the appropriate
code generator class to be dynamically loaded.

The structure of the Vector Pascal system is shown in figure 7.2. It is complex.
Consider first the path followed from a source file, the phases that it goes through are

i. The source file (1) is parsed by a java class PascalCompiler.class (2) a hand written,
recursive descent parser[32], and results in a Java data structure (3), an ILCG tree,
which is basically a semantic tree for the program.

ii. The resulting tree is transformed (4) from sequential to parallel form and machine in-
dependent optimisations are performed. Since ILCG trees are java objects, they can
contain methods to self-optimise. Each class contains for instance a methodeval
which attempts to evaluate a tree at compile time. Another methodsimplify

19

{ var i;
for i=1 to 9 step 1 do {

v1[^i]:= +(^(v2[^i]),^(v3[^i]));
};

}

Figure 8: Sequential form of array assignment

{ var i;
for i= 1 to 8 step 2 do {

(ref int32 vector (2))mem(+(@v1,*(-(^i,1),4))):=
+(^((ref int32 vector (2))mem(+(@v2,*(-

(^i,1),4)))),
^((ref int32 vector (2))mem(+(@v3,*(-

(^i,1),4)))));
};
for i= 9 to 9 step 1 do {

v1[^i]:= +(^(v2[^i]),^(v3[^i]));
};

}

Figure 9: Parallelised loop

applies generic machine independent transpormations to the code. Thus thesim-
plify method of the classFor can perform loop unrolling, removal of redundant
loops etc. Other methods allow tree walkers to apply context specific transforma-
tions.

iii. The resulting ilcg tree (7) is walked over by a class that encapsulates the semantics
of the target machine’s instructionset (10); for example Pentium.class. During code
generation the tree is futher transformed, as machine specific register optimisations
are performed. The output of this process is an assembler file (11).

iv. This is then fed through an appropriate assembler and linker, assumed to be exter-
nally provided to generate an executable program.

7.3 Vectorisation

The parser initially generates serial code for all constructs. It then interogates the cur-
rent code generator class to determine the degree of parallelism possible for the types of
operations performed in a loop, and if these are greater than one, it vectorises the code.

Given the declaration
var v1,v2,v3:array[1..9] of integer;
then the statement
v1:=v2+v3;
would first be translated to the ILCG sequence shown in figure 8 In the example above

variable names such asv1 andi have been used for clarity. In realityi would be an ad-
dressing expression like:(ref int32)mem(+(^((ref int32)ebp), -1860)) ,
which encodes both the type and the address of the variable. The code generator is queried
as to the parallelism available on the typeint32 and, since it is a Pentium with MMX,
returns 2. The loop is then split into two, a portion that can be executed in parallel and a
residual sequential component, resulting in the ILCG shown in figure 9. In the parallel part
of the code, the array subscriptions have been replaced by explictly cast memory addresses.

20

{ var i:
i:= 1;
leb4af11b47e:
if >(2, 0) then if >(^i,8) then goto leb4af11b47f

else null
fi

else if <(^i, 8) then goto leb4af11b47f
else null

fi
fi;

(ref int32 vector (2))mem(+(@v1,*(-(^i,1),4))):=
+(^((ref int32 vector (2))mem(+(@v2,*(-

(^i,1),4)))),
^((ref int32 vector (2))mem(+(@v3,*(-

(^i,1),4)))));
i:=+(^i,2);

(ref int32 vector (2))mem(+(@v1,*(-(^i,1),4))):=
+(^((ref int32 vector (2))mem(+(@v2,*(-

(^i,1),4)))),
^((ref int32 vector (2))mem(+(@v3,*(-

(^i,1),4)))));
i:=+(^i,2);
goto leb4af11b47e;
leb4af11b47f:
i:= 9;
v1[^i]:= +(^(v2[^i]),^(v3[^i]));

}

Figure 10: After applyingsimplify to the tree

This coerces the locations from their original types to the type required by the vectorisation.
Applying thesimplify method of the For class the following generic transformations
are performed:

1. The second loop is replaced by a single statement.

2. The parallel loop is unrolled twofold.

3. The For class is replaced by a sequence of statements with explicit gotos.

The result is shown in figure 10. When theeval method is invoked, constant folding
causes the loop test condition to be evaluated toif >(^i,8) then goto leb4af11b47f .

7.4 Machine descriptions in ILCG

ILCG exists both as a tree language, defined as a set of Java classes, and as a textual notation
that can be used to describe the semantics of machine instructions.

Pentium.class (10 in figure 7.2) is produced from a file Pentium.ilc (8), in ILCG, which
gives a semantic description of the Pentium’s instructionset. This is processed by a code
generator generator which builds the source file Pentium.java.

A machine description typically consists of a set of register declarations followed by
a set of instruction formats and a set of operations. This approach works well only with
machines that have an orthogonal instruction set, ie, those that allow addressing modes and
operators to be combined in an independent manner.

21

7.4.1 Registers

When entering machine descriptions in ilcg registers can be declared along with their type
hence

register word EBX assembles[’ebx’] ;
reserved register word ESP assembles[’esp’];
would declareEBX to be of typeref word .

7.4.2 Aliasing

A register can be declared to be a sub-field of another register, hence we could write
alias register octet AL = EAX(0:7) assembles[’al’];
alias register octet BL = EBX(0:7) assembles[’bl’];
to indicate thatBL occupies the bottom 8 bits of registerEBX. In this notation bit zero

is taken to be the least significant bit of a value. There are assumed to be two pregiven
registersFP, GP that are used by compilers to point to areas of memory. These can be
aliased to a particular real register.

register word EBP assembles[’ebp’] ;
alias register word FP = EBP(0:31) assembles [’ebp’];
Additional registers may be reserved, indicating that the code generator must not use

them to hold temporary values:
reserved register word ESP assembles[’esp’];

7.4.3 Register sets

A set of registers that are used in the same way by the instructionset can be defined.
pattern reg means [EBP |EBX|ESI|EDI|ECX|EAX|EDX|ESP] ;
pattern breg means[AL|AH|BL|BH|CL|CH|DL|DH];
All registers in an register set should be of the same length.

7.4.4 Register Stacks

Whilst some machines have registers organised as an array, another class of machines,
those oriented around postfix instructionsets, have register stacks.

The ILCG syntax allows register stacks to be declared:
register stack (8)ieee64 FP assembles[’ ’] ;
Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of type reft as first argument and a value
of typet as the second argument. Thus we might have:

PUSH(FP,↑mem(20))

POP is a monadic operator returningt on stacks of typet. So we might have
mem(20):=POP(FP)

7.5 Instruction formats

An instruction format is an abstraction over a class of concrete instructions. It abstracts over
particular operations and types thereof whilst specifying how arguments can be combined.

instruction pattern
RR(operator op, anyreg r1, anyreg r2, int t)
means[r1:=(t) op(↑((ref t) r1),↑((ref t) r2))]
assembles[op ’ ’ r1 ’,’ r2];

22

In the above example, we specify a register to register instruction format that uses the
first register as a source and a destination whilst the second register is only a destination.
The result is returned in register r1.

We might however wish to have a more powerful abstraction, which was capable of
taking more abstract apecifications for its arguments. For example, many machines allow
arguments to instructions to be addressing modes that can be either registers or memory
references. For us to be able to specify this in an instruction format we need to be able to
provide grammer non-terminals as arguments to the instruction formats.

For example we might want to be able to say
instruction pattern
RRM(operator op, reg r1, maddrmode rm, int t)
means [r1:=(t) op(↑((ref t)r1),↑((ref t) rm))]
assembles[op ’ ’ r1 ’,’ rm] ;
This implies that addrmode and reg must be non terminals. Since the non terminals

required by different machines will vary, there must be a means of declaring such non-
terminals in ilcg.

An example would be:
pattern regindirf(reg r) means[↑(r)] assembles[r];
pattern baseplusoffsetf(reg r, signed s) means[+(↑(r) ,const s)] assembles[r ’+’ s];
pattern addrform means[baseplusoffsetf| regindirf];
pattern maddrmode(addrform f) means[mem(f)] assembles[’[’ f ’]’];
This gives us a way of including non terminals as parameters to patterns. Instruction

patterns can also specify vector operations as in:
instruction pattern PADDD(mreg m, mrmaddrmode ma)
means[(ref int32 vector(2)m:=(int32 vector(2))+((int32 vector(2))↑(m),(int32 vector(2))↑(ma)))]
assembles [’paddd ’m ’,’ ma];
Here vector casts are used to specify that the result register will hold the typeint32

vector(2), and to constrain the types of the arguments and results of the + operator.

7.6 Instructionsets

At the end of an ILCG machine description file, the instructionset is defined. This is given
as an ordered list of instruction patterns. When generating code the patterns are applied
in the order in which they are specified until a complete match of a statement has been
achieved. If a partial match fails the code generator backtracks and attempts the next in-
struction. Care has to be taken to place the most general and powerfull instructions first.
Figure 11 illustrates this showing the effect of matching the parallelised loop shown in
figure 10 against the Pentium instruction set. Note that incrementing the loop counter is
performed using load effective address (lea) since this, being more general, occurs before
add in the instruction list.

This pattern matching with backtracking can potentially be slow, so the code generator
operates in learning mode. For each subtree that it has sucessfully matched, it stores a
string representation of the tree in a hash table along with the instruction that matched it.
When a tree has to be matched, it checks the hash table to see if an equivalent tree has
already been recognised. In this way common idioms only have to be fully analysed the
first time that they are encountered.

8 Conclusions

Vector Pascal currently runs under Windows98 , Windows2000 and Linux. Separate com-
pilation using Turbo Pascal style units is supported. C calling conventions allow use of
existing libraries. Work is underway to port the BLAS library to Vector Pascal, and to
develop an IDE and literate programming system for it.

23

mov DWORD ecx, 1
leb4b08729615:
cmp DWORD ecx, 8
jg near leb4b08729616
lea edi,[ecx-(1)]; substituting in edi with 3 oc-

curences and score of 1
movq MM1, [ebp+edi* 4+ -1620]
paddd MM1, [ebp+edi* 4+ -1640]
movq [ebp+edi* 4+ -1600],MM1
lea ecx,[ecx+ 2]
lea edi,[ecx-(1)]; substituting in edi with 3 oc-

curences and score of 1
movq MM1, [ebp+edi* 4+ -1620]
paddd MM1, [ebp+edi* 4+ -1640]
movq [ebp+edi* 4+ -1600],MM1
lea ecx,[ecx+ 2]
jmp leb4b08729615
leb4b08729616:

Figure 11: The result of matching the parallelised loop against the Pentium instruction set

Vector Pascal provides an effective approach to providing a programming environment
for multi-media instruction sets. It borrows abstraction mechanisms that have a long history
of sucessfull use in interpretive programming languages, combining these with modern
compiler techniques to target SIMD instruction sets. It provides a uniform source language
that can target multiple different processors without the programmer having to think about
the target machine. Use of Java as the implementation language aids portability of the
compiler accross operating systems.

References

[1] Advanced Micro Devices, 3DNow! Technology Manual, 1999.

[2] Aho, A.V., Ganapathi, M, TJiang S.W.K., Code Generation Using Tree Matching and
Dynamic Programming, ACM Trans, Programming Languages and Systems 11, no.4,
1989, pp.491-516.

[3] Blelloch, G. E., NESL: A Nested Data-Parallel Language, Carnegie Mellon Univer-
sity, CMU-CS-95-170, Sept 1995.

[4] Burke, Chris, J User Manual, ISI, 1995.

[5] Cattell R. G. G., Automatic derivation of code generators from machine descriptions,
ACM Transactions on Programming Languages and Systems, 2(2), pp. 173-190, April
1980.

[6] Chaitin. G., Elegant Lisp Programs, in The Limits of Mathematics, pp. 29-56,
Springer, 1997.

[7] Cheong, G., and Lam, M., An Optimizer for Multimedia Instruction Sets, 2nd SUIF
Workshop, Stanford University, August 1997.

[8] Cockshott, Paul, Direct Compilation of High Level Languages for Multi-media
Instruction-sets, Department of Computer Science, University of Glasgow, Nov 2000.

24

[9] Ewing, A. K., Richardson, H., Simpson, A. D., Kulkarni, R., Writing Data Parallel
Programs with High Performance Fortran, Edinburgh Parallel Computing Centre, Ver
1.3.1.

[10] Gagnon, E., SABLECC, AN OBJECT-ORIENTED COMPILER FRAMEWORK,
School of Computer Science McGill University, Montreal , March 1998.

[11] Susan L. Graham, Table Driven Code Generation, IEEE Computer, Vol 13, No. 8,
August 1980, pp 25..37.

[12] Hadjiyiannis, G., Hanono, S. and Devadas, S., ISDL: an Instruction Set Description
Language for Retargetability, DAC’97, ACM.

[13] Intel, Intel Architecture Software Developers Manual Volumes 1 and 2, 1999.

[14] Intel, Willamette Processor Software Developer’s Guide, February, 2000.

[15] ISO, Extended Pascal ISO 10206:1990, 1991.

[16] Iverson K. E., A Programming Language, John Wiley & Sons, Inc., New York (1962),
p. 16.

[17] Iverson, K. E. . Notation as a tool of thought. Communications of the ACM, 23(8),
444-465, 1980.

[18] Iverson K. E, A personal View of APL, IBM Systems Journal, Vol 30, No 4, 1991.

[19] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software Inc. (ISI),
Toronto, Ontario, 1995.

[20] Jensen K., and Wirth N., Pascal User Manual and Report, Springer, 1978.

[21] Krall, A., and Lelait, S., Compilation Techniques for Multimedia Processors, Interna-
tional Journal of Parallel Programming, Vol. 28, No. 4, pp 347-361, 2000.

[22] Leupers, R., Niemmann, R. and Marwedel, P. Methods for Retargetable DSP Code
Generation, VLSI Signal Processing 94, IEEE.

[23] Leupers, R., Compiler Optimization for Media Processors, EMMSEC 99/Sweden
1999.

[24] Metcalf, M., and Reid., J., The F Programming Language, OUP, 1996.

[25] Peleg, A., Wilke S., Weiser U., Intel MMX for Multimedia PCs, Comm. ACM, vol
40, no. 1 1997.

[26] Ramsey, N. and Fernandez, M., ACM Transactions on Programming Languages and
Systems, Vol. 19, No. 3, 1997, pp492-524.

[27] Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., and Schonberg, E., Programming with
Sets: An Introduction to SETL (1986), Springer-Verlag, New York

[28] Srereman, N., and Govindarajan, G., A Vectorizing Compiler for Multimedia Exten-
sions, International Journal of Parallel Programming, Vol. 28, No. 4, pp 363-400,
2000.

[29] Tannenbaum, A. S., A Tutorial on ALGOL 68, Computing Surveys, Vol. 8, No. 2,
June 1976, p.155-190.

[30] Turner, D., An overview of MIRANDA, SIGPLAN Notices, December 1986.

25

[31] van der Meulen, S. G.,ALGOL 68 Might Have Beens, SIGPLAN notices Vol. 12, No.
6, 1977.

[32] Watt, D. A., and Brown, D. F., Programming Language Processors in Java, Prentice
Hall, 2000.

26

